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ABSTRACT

Electromagnetic interference from power lines is one of

the main sources of man-made interference to communications 0

in the high frequency (HF) radio band. Two types of radio

interference generated by power lines are gap-type noise

caused by electric discharges across line hardware and

corona noise caused by the partial breakdown of the air due

to the high electric fields around transmission line

conductors. Using original data, this research has devel-

oped a parameter based model of gap-type and corona noise

that allows the fundamental noise mechanisms to be ' '

mat:hematically or physically simulated. An expression for We

the power spectral density (PSD) of gap-type noise and F.
corona is derived. The energy detection problem is

formulated, and using analytical results based on the Hall

model for radio noise, a robust energy detection receiver is

developed. Tests of this receiver using actual and

simulated data are described.
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I. INTRODUCTION

A. PURPOSE

Observations of radio interference at high frequency

(HF) receiver sites have indicated that existing models of

man-made radio noise are inadequate to describe the observed

time- and frequency-domain behavior of the noise. The data

also shows that quite often a specific noise source pre-

dominates in a particular location. These observations led

to the objectives of this dissertations

1. to develop specific models for certain man-made
noise sources in the HF radio band and

2. to apply this model to the analysis of energy

detection receivers.-

B. BACKGROUND

Studies conducted over the past few years have indicated

that one of the primary sources of man-made radio noise in

the HF band are alternating current (AC) transmission and

distribution lines [Refs. 1,2]. Two of the primary sources

of power line noise are gap noise, also known as micro-

sparking, and corona. Gap noise is caused by a sparking

process between hardware points on utility poles and corona

is caused by the partial breakdown of air due to high

electric fields around high voltage conductors. Both of

these noise types are non-Gaussian noise processes.

A5 8
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V

The majority of the models of man-made and atmospheric

noise to date have assumed the high amplitude impulses

driving the receiver have either a Poisson arrival rate or a

variation of Poisson arrivals. This assumption has allowed

the derivation of first order envelope statistics: the

amplitude probability distribution (APD) function and the

density function of the phase of received noise for various

amplitude distributions of the driving impulses. Observa-

tions of man-made noise from power lines, however, has

indicated that the assumption of interpulse independence

(Poisson arrival times) is not valid. There exists a

definite time domain correlation of the impulses driving the

receiver. This is due to the underlying deterministic

mechanism of the fundamental frequency of the power line

voltage. Consequently, this research has concentrated on

the statistics of the impulse arrivals which are manifest in

the autocorrelation function and the spectrum of the

_bserved noise process. Accordingly, the models developed

are specific rather than general and are more suited to

source identification by spectrum analysis and robustness --

evaluation of systems rather than to generic specification

of optimum receiver structures.

The performance of energy detection receivers for

stochastic signals in non-Gaussian noise has received

relatively little study. Actual implementation of algo-

rithms for signal detection has been based on heuristics.

9
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The advent of digital signal processing techniques that

allow for complex post-detection algorithms suggests a

carefulstatistical analysis of the noise performance of

these systems may help develop more efficient and robust

receivers.

C. CONTENT

A brief outline of the rest of the thesis will now be

presented. Chapter II develops a general model for bandpass

impulsive phenomena using a filtered impulse model and

complex envelope theory. Well known empirical models and

physical models of radio noise are presented and their

relationship to the generalized model discussed. Particular

attention is paid to the Hall model for atmospheric radio

noise CRE. 33. Some useful extensions to it are derived".

that will be used for simulations in Chapter V.

In Chapter I1, field observations from sources of gap

noise interference are presented and analyzed. Three cases

of actual interference are used and a probabilistic model

based on a statistical analysis of the data and the filtered

impulse model developed in Chapter II is specified. The

power spectral density (PSD) of gap type noise as predicted

by the model is derived and compared to the data.

Using an actual case of corona noise from a 500 kV power

line, the same type of analysis is carried out for corona

noise. The corona noise model is based on the same filtered

%i-



impulse framework as the gap noise model of Chapter III r%

however, the specifications differ substantially.

Using the Hall model for atmospheric noise discussed in

Chapter II, a locally optimum receiver for detection of

unknown signals in HF atmospheric noise is derived. A

practical modification to this receiver shows it to be an

adaptive limiter. The performance of this receiver is then

examined in simulated man-made noise and in recorded HF

signal and noise data.

Appendix A presents a brief description of the

instrumentation that was used to collect much of the data

for this thesis. The dissertation concludes with a brief

summary of results and some suggestions for future research.
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II. IMPULSIVE NOISE AND RECEIVER MODEL

A. INTRODUCTION

In this chapter a general set of specifications for an

impulsive noise interference process will be developed and

the results of previous work in the field explained in terms

of the specifications. This generalized scenario will be

used in later chapters to specify complicated sources of

man-made radio interference. In attempting to describe

atmospheric radio noise, two general types of models have

been developed: empirical models designed to fit first order

statistical data, and physical models directly related to
..

5

the underlying physical mechanisms. The Hall empirical

model for atmospheric radio noise has been shown to fit

atmospheric noise data very well and will be used in this

dissertation. Some extensions to the Hall model will be

developed in this chapter.

B. GENERALIZED SCENARIO

In order to provide a framework for the discussion of

the impulsive noise models, a general interference scenario

for impulsive noise will be described [Reof. 4,53. A typical

interference scenario consists of the following elements:

1. a source of interference,

2. a transmission medium to the receiver and

12
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3. the receiver where the interference manifests
itself.

For this study the noise process at the receiver is

modeled as the sum of a high density (in time), low amp-

litude Gaussian component and a low density, high amplitude

impulsive term.

These elements are shown below, where e'(t) in Fig. 1 is

the impulsive interference, L'(w) is the frequency response

of the transmission medium, z'(t) is white Gaussian noise

and H'(w) is the combined response of the RF and IF filters

of the receiver.

e ' (t)

Figure 1. Interference Scenario

13
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The source of impulsive noise is specified by the 6

equation

N(t)
e'(t) = Er e, 6(t-t,) (2-1)

i=1

where e1  is the real amplitude of the ith pulse and N(t) is

a unit counting process that generates arrival times, the

ts 's. Using this representation, the impulsive interference

source is described by the probability density function

(PDF) of each e,, given by pi(e), and the impulse arrival

times generated by the unit counting process, N(t).

In order to simplify later analysis the interference

scenario will be expressed in terms of its complex envelope.

The interference process at the receiver detector is n'(t)

and will be replaced by its complex envelope equivalent,

n(t), where

jUwe t
nO(t) - Rein(t)e ] (2-2)and

n(t) - ne (t) + jng (t). (2-3)

The term n(t)e is known as the analytic signal $

representation of n'(t), and n(t) is the complex envelope
-4.

representation of n'(t). The reference frequency for the

complex envelope representation is we • When n'(t) is a

bandpass process, ne (t) and no (t) are the lowpass inphase

and quadrature modulation components of n(t) respect-

ively.[Ref. 6s:p. 75]

14 U
b., 4
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.4 Specifying a filtered impulse model in complex envelope

form requires deriving an expression for the driving impulse

function given in Eqn. 2-1. Two equivalent approaches may

be taken and they are both outlined below. In the first

approach a bandpass impulse may be postulated where the

spectrum of the impulse is assumed flat from wo - W to wo +

W where w, is the reference frequency and W is an arbitrary

bandwidth. For this case the analytic signal representation

is easily found in the frequency domain. Using the

frequency domain definition, the analytic signal associated

with e'(t) in Eqn. 2-1 is

eA(t) = (1/n) E'(w)e dw. (2-4)

0

Inserting the definition of the bandpass impulse defined ..

above and using Eqn. 2-1

N(t) jwo (t-t,)
eA(t) = E (2/R) e sin(W(t-t,))/(t-t,). (2-5)

i-1

The complex envelope of e'(t) is defined as

-jwO t

e(t) eA(t)e (2-6)
and "

N(t) -jet
e(t) E E (2/n) e sin(W(t-t,))/(t-t,) (2-7)

where wot, = e,. As W becomes large, e(t) will asympto-

tically approach [Ref. 73

4
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N(t) -je 1
e(t) = E 20 6(t-t,). (2-8)

The second approach [Ref. 83 is to consider the impulse

as ideal and constant in the frequency domain. The analytic

signal representation of e'(t) is then directly determined

from the time domain definition of an analytic signal. The

analytic signal is defined as

A
e,(t) ( e'(t) + .e'(t) (2-9)

A "
where e'(t) is the Hilbert transform of e'(t). The analytic

signal representation of Eqn. 2-1 using the above defin-

itions is

-, N(t)

., (t) = £ 6(t-t, ) + 3/(n(t-t, )) (-10)
i-1

since 1/vt is the Hilbert transform of the delta function.

The complex envelope of e'(t) is then

N(t) -jet -.,O t
e(t) = r 6(t-tt)e + je /(n(t-t,)) (2-11)i=1

using Eqn. 2-6.

Although apparently different, when the complex impulse

trains described by Eqns. 2-8 and 2-11 are convolved with a

complex filter impulse response, the filter output is -

identical for both representations. If h(t) is the complex

envelope of the filter impulse response, then the filter

output with the input given by Eqn. 2-8 is

16ZtL 'S.



N(t) -j8,
h(t-t,) (2-12) *

where complex convolution is defined as

h(t) * e(t) =(1/2) h(r)e(t-r)d,. (2-13)

The filter output with the input defined by Eqn. 2-11 is

N(t) -j E -jW0t
(1/2) E h(t-t, )e + je hA (t-t,) (2-14)

i=1 P. -

where the convolution definition of the Hilbert transform.-.

was used [Ref. 6:p. 69). Using Eqn. 2-6, the same result as

derived in Eqn. 2-12 is then found. Due to its simplicity

and for ease of use in programming simulations, Eqn. 2-8

will be used to represent the driving impulse function for

the nest of this dissertation.

One further point to mention concerns the probabi.litv

distribution of 6, in Eqn. 2-8. For the processes we con-

sider, t, will have random arrival times and, as can be seen

in Eqn. 2-7, 6, is formed by multiplying t, times the

reference frequency, Wo. Consequently, 6, is the phase of

the impulse time with respect to the reference frequency.

It can be assumed to be uniformly distributed over 0 to 2n

when the t, 's have a probabilistic interarrival distribution

and wo is much greater than the inverse of the interarrival
S..

times [Ref. 9: pp. 279, 101.

17 i 7 ""'



In an actual interference situation the received %

impulses are filtered by the radiating antenna, spreading

losses, atmospheric attenuation, receiving antenna and 9

cabling losses. These terms will be lumped together as an

equivalent filter, L'(w). Examples of this filtering term

for various interference sources have been recorded by many

researchers [Ref. 11,12). The filter characteristic is

specified in the frequency domain as L'(w) since that is £

where it is most easily observed.

An example of this type of filtering is shown in Fig. 2

where the frequency spectrum of an impulsive noise source

due to a gap discharge is shown from 0 to 200 MHz. The

straight lines in the 3-Axis view are due to stations in the

high frequency (HF) band from 2 to 30 MHz and the FM band

from 88 to 106 MHz. The continuous envelope seen in the

upper view is the magnitude of the frequency response of

L'(w). The solid line in the upper picture is the noise

floor of the spectrum analyzer at -100 dBm.

The complex envelope of the impulse response of the

attenuation term, L'(w), is given in the frequency domain by

L(w) = LPEL'(-w-w0 ) + L' (w+w. 3 (2-15) -'

where L. denotes the lowpass part of the quantity in

brackets.

A complex Gaussian component z(t) will also exist in the

observed noise process and is due to the combination of:

18 .i.
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1. the thermal noise in the receiver, and

2. the combined sum of many low level atmospheric or
man-made impulsive sources.

This term will be modeled by independent zero mean Gaussian

noise processes for the inphase and quadrature terms with a

power spectral density (PSD) in each component of No/2. The

distinction between the Gaussian noise term and impulsive

noise term is that many receiver responses overlap for the

high density, low amplitude Gaussian case, satisfying the

condition for the Central Limit Theorem. For the impulsive

noise the receiver response to each impulse is discernible

such that the probability of more than one or two pulses
.5%

overlapping is negligible. Common sources of impulsive

noise are man-made noise due to power lines and atmospheric

noise due to lightning.

The time domain input to the receiver is now modeled by

the expression

N(t) -j ,(

n(t) = (h(t)/2) * Ez(t) + E 2eje j e L(w)dw]
i=l

- o ( -1)".

where
h(t) = he(t) + jh.(t). b

The noise power bandwidth of H(w) will be designated Ba,.

In most situations L'(w) will effectively be constant in

comparison to the narrowband receiver filter H(w). This

makes L(w) a constant that depends only on W0 •

Additionally, g(t) will be defined by

20
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*g(t) ( h(t/2)) z it) (2-17)

and is the low level Gaussian noise at the detector. The4

power in the inphaso and quadrature components of the

Gaussian noise will be N.Btpp/2. The complex lowpass noise 14N

process can now be written as

*N(t) -jO,
n(t) g(t) + E ate h(t-tt) (2-18)

where

The parameter at is then a scenario dependent parameter that

is a function of the reference frequency and the impulse '5

amplitude. With the above simplifications, Fig. 1 can now

'.4' be expressed in complex envelope form as shown in Fig. 3.

Z Ct) P-.'

a(t) H~)n(t)

Figure 3. Complex Envelope of Interference Scenario

The term% from Fig. 1 have been replaced by their equivalent

complex envelope representations and the prime is dropped to

indicate this.



Some further simpl ifications will now be considered

based on the characteristics of the H'(w), the bandpass

filter. If the impulse response h(t) of the filter is real,

H'(w) has conjugate symmetry about the origin in the sense

that H'"(w) = H'(-w). Furthermore, if H'(w) is sym-metrical

in the same way about the reference frequency, WO, then

ho(t) will equal 0.

The envelope squared of the process defined in Eqn. 2-18

is

2 2 2
E (t) = nc (t) + n, (t). (2-20)

If the Gaussian noise term is assumed to equal 0 then

2 N(T) N(T)

E (t) = E a, aj hc (t-t,)hc (t-t,)cos(8 -0,) +

N(T) N(T)

E E a, a, he (t-t. )he (t-t )cos(, -6, ). (2-21)

i=1 j=1

If N(T) defines a low density counting process such that

there is negligible overlap between subsequent pulses and

h(t) is the complex envelope of the impulse response of a

bandpass symmetrical filter, then the envelope of n(t) can

be simply written as

N(t)

E(t) = E a, h(t-t, ) (2-22)

where h(t) is equal to hc (t)

At this point of the analysis two avenues may be

pursued. If there is a time dependency between pulses (non-

22



~~~exponential ly distributed interarrival times) , then tne :'.

correlation function and spectrum of the process can be

.examined. I the amplitude probability d.stribution (APD)

of the envelope is the desired result, then the char- '

acteristic function of the envelope is most useful. The APD

I-. .function is commonly used in radio noise research and is

L ~equal to one minus the cumulative distribution function "'

(CDF). In general these two approaches are mutual ly

,4 .'"

rexclusive since the assumption of time dependency between

the pulses makes the envelope APD f ult tn thelt thar-

point process then the envelope APD may be calculated: "

f ohowever, the spectrum is constant. The remainder on this

a chapter will follow the envelope APD approach. Result-s'

obtained by previous researchers will be developed usinc the

CIgeneral notse model. Chapters III and IV wmll explain t e

other avenue and look at the spectrum o complicated man-

made nolse processes e of n fu

" C. EMPIRICAL MODELS "

Empirical models o atmospherc nose have been

developed to provide a mathemat ica expression or the

irst-order statistics of the envelope o the receved

wavedorm. In particular, the APD has been emphasized. This .

type op model attempts to construct a mathematical express-io'"

"v ion that fits observed data without regard for the physics

e~23 * - .4 4 ~ .4. N .1
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of the interference scenario. Empirical models have the

advantage that the resulting expressions are much simpler

than those obtained from the filtered impulse models. One

disadvantage of this class of model is that since only the

first order statistics of the noise are considered in

developing and fitting the model, the higher order sta-

tistics may not match the data well.

Variations of the Rayleigh distribution have been

proposed by a number of authors to fit observed atmospheric

noise data. The Rayleigh PDF is

2

p(r) = 2are r a 0 (2-23)

=0 r<

and the APD or exceedance probability

2
-(xro

Pr(r > r0 ) = 1 - P(ro) e r0  0 (2-24)

=1 r 0 <0

How well the single parameter Rayleigh distribution fits

observed atmospheric noise data can be seen in Fig. 4. The

data points are exceedance probabilities plotted in decibels

(dB) above the root-mean-squared (RMS) value of the received

envelope. The data was measured on an ARN-2 receiver at a

center frequency of 10 MHz at Boulder, Colorado [Ref. 13).

The high probability, low amplitude portions of the observed

data approaches the slope of the Rayleigh distribution curve

for a equal to 12. (a is defined in Eqn. 2-24) This value

24
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of a was chosen to fit the high probability portion of the

data. That the data approaches a Rayleigh distribution is

due to the effect of the many small overlapping impulses

occurring at low amplitudes whose quadrature Gaussian

components will have a Rayleigh envelope. However, at the

low probability, high amplitude part of the curve the

Rayleigh distribution predicts far fewer values than

actually occur. This is the distinguishing factor of the

envelope distribution of impulsive noise: that its

distribution contains a higher probability of high amplitude

terms than is predicted by the Rayleigh distribution. The

second curve in Fig. 4 where a is equal to .5 is the

Rayleigh distribution with the same power as the observed

data. It can be seen that this curve under estimates the

high amplitude and over estimates the low amplitude values

of the observed distribution. It should be noted that this

type of plot emphasizes the low probability portion of

distribution since that is where the deviation from the

expected behavior occurs.

In an attempt to correct the poor fit of the Rayleigh

distribution at high amplitude levels, Likhter [Ref. 14)

proposed a combination of two Rayleigh distributions:

2 2
-cro -SrO

Pr(r > ro) = (1 - c)e + ce . (2-25)

This formula has been shown to agree poorly with practical

results [Ref. 153.

26

S. ' i
- V.' .



..... . ..........

%Y
A

Spaulding, Roubique and Crichlow [Ref. 16) combined the 10

Rayleigh distribution with a "power" Rayleigh-distribution

to obtain a distribution that fit very well for atmospheric

noise over a wide range of receiver bandwidths. This APD is

2

Pr(r > ro) = e r 0 < 13

2 1/s
-C(ur 0 )

Pr(r > ro) =e ro 2 B3 (2-26)

where a, B and s are determined from measured statistical

parameters of the noise. J"

Horner and Harwood [Ref. 173 proposed the two parameter

log-normal dit. ribution and found it gave a satisfactory fit

to radio noise data in the VLF band. The log-normal was

chosen since it has a more impulsive tail and fits the high

amplitude, low probability data better than the Rayleigh

distribution. The PDF for the log-normal distribution is

2 2
1 -(ln(r) - a) /2.

P(r) e (2-27)
1/2

ra (2n)

Two examples of the APD of the log-normal distribution are

shown in Fig. 5 where the curve with a equal to -.24 and a2

equal to .24 is the log-normal distribution with the same

mean and mean square parameters as the curve with a equal to

.5 in Fig. 4. Comparing the two curves the log-normal

distribution provides an intrinsically better fit to

27
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impulsive noise data at both the high and low amplitude

values. When the log-normal density has both parameters

chosen to match the mean and mean square values of the

observed data an excellent fit to this particular data is

obtained. This is seen in the curve with a equal to -1.4

and as equal to 1.4.

Another model that has been successfully used to fit the

observed APD of atmospheric radio noise is Hall's general-

ized "t" distribution [Ref. 33. This model is unique in

that it is not of the filtered impulse type; however, in K.

contrast to the strictly empirical models it does postulate

a random process.

One of the problems of Gaussian models of atmospheric

noise is that the dynamic range of the model is less than

the observed dynamic range of the noise. To achieve a
4.

greater dynamic range starting with a Gaussian process, Hall

proposed a model which considered the received noise to be

of the form

n(t) = a(t)s(t) (2-28)
.4.

where a(t) is a slowly varying stationary random process and

s(t) is an independent, narrowband Gaussian process. An

analytically tractable distribution was selected for a(t)

which was chosen to give good agreement between the model

and measured atmospheric noise data. The distribution for

a(t) is:

29
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2 2
(m/2) 1 - (m/2a a

p(a) 0 17-
m m+l

a Fr(m/2 lal (2-29)

where m and a are the two parameters used to fit the model

to the data. The distribution of s(t) is Gaussian;

2 2
1 -(s /2q1, )

P(S)°p(s) = e ...

2 1/2
(2na', ) (2-30) *6..

Hall calculated the density function of n(t) to be

8-1r(0/2) y1"

p(n) - (2)
1/2 2 2 e/2

('((0-1)/2) n (n + y ) (2-31)

where
1/2

y m- (ar, /0),

B " m = 1,

and r is the gamma function. For the case where a, = a, :'

Eqn. 2-31 is the density function for Student's "t"

distribution which is the basis for describing the density

as a generalized "t" distribution.

Hall then calculated the envelope distribution for n(t)

based on the above assumptions and obtained

0-1 r
p(r) = (0 - 1) y

2 2 ((0+l)/2) '
(r + y ) (2-32)

with the phase uniformly distributed between 0 and 2n.

30
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For atmospheric radio noise, values of e in the range 2

to 5 have been found to give excellent agreement with the

data [Re*f. 18,193. (Models with integer values of the

parameter e will be abbreviated to Hall2, Hall3, etc.)

Fig. 6 shows the Hall3 fit to the same atmospheric noise

data used in Figs. 3 and 4. An excellent fit to this data

is obtained. The Hall model has some disadvantages. The

higher moments only exist for orders greater than e-1 and

the parameters 8 and y must be determined for each

interference scenario and are not easily related to the

physical source of the interference.

D. FILTERED IMPULSE NOISE MODELS

The filtered impulse models differ fundamentally. in

concept from the empirical models described previously.

This class of model will be explained in terms of the

generalized interference scenario presented at the beginning

of the chapter. The filtered impulse models have the

advantage of being based on the underlying physics of the

process but suffer from the disadvantage of being

analytically complex. Interestingly, some of the results

obtained from the filtered impulse models have retroactively S.

justified the expression that were derived from the

empirical models.

To determine the APD of the envelope of a filtered

impulse process, the joint characteristic function of the

31
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L%!
inphase and quadrature components is determined. Since the

noise is narrowband it will be circularly symmetrical and
W,

the 2-D Fourier transform will become a Hankel transform

[Ref. 20,21]. This characteristic function is transformed

to polar coordinates, then inverted to determine the APD.

Starting with the complex noise process described in Eqn. 2- P

18, the joint characteristic function of the inphase and

quadrature components is

j(w, nc (t) + wa ns (t))'[
0(w, , a ) = Ele ]. (2-33) .

It is shown in Appendix B that the characteristic function

of the envelope due to the Gaussian term is

-No B(w. )12
0. (w,) = e (2-34)

and the characteristic function of the envelope due to the

impulsive term is
CO T

X p(a) [J 0 (w,.ah (1r) - I]drda (2-35)

where p(a) is the impulse amplitude density function, X, the

Poisson rate function, hc (t), the inphase component of the

filter impulse response and J. is the ordinary Bessel

function of the first kind. The density function of the

envelope is then the inverse Hankel transform given by

p(r) = rw, Jo (rw.)0. (w )0, (w.)dw.. (2-36)

33
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This equation for the PDF is difficult to evaluate; however,

a number of researchers have examined special cases to

obtain results.

Furutsu and Ishida [Reof. 223 derived an equation of the

same form as Eqn. 2-36 with no Gaussian term. They obtained

many approximate results by considering the equation for

specific source density functions. If p(a) is exponential

. they found that the resulting envelope density was

approximately Rayleigh for small amplitude values. If p(a)

was uniformly distributed, the log-normal density was found

to be a good approximation over most of the range of

interest. If a strong local source of interference was

present, Furutsu and Ishida showed that a function involving

the confluent hypergeometric function was a good

approximation. They also considered one special case were

the unit counting function N(T) was modified to be a Poisson

- Poisson branching process and showed that for low

amplitudes the resulting density function was approximated

by the simple Poisson case.

Giordano [Ref. 233 evaluated Eqn. 2-36 for various

distributions of p(a) which he determined from assumed

propagation laws and spatial distributions of impulse '

sources. In one particular case he adopted the following

assumptions:

1. No Gaussian component

34
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2. Uniform spatial distribution of impulse sources

3. Inverse distance law for received field strength

4. Arbitrary receiver envelope response

and showed that the APD of the envelope function was approx-

imated by

Pr(r > r.) = (2-37)

(r. + K )?:

where

T

K = c h(t) dt

T is the observation interval, h(t) the filter response, and

c is a scenario dependent constantz This result is sig-

nificant because it has the same form as the APD of the

Hall2 model and physically justifies what had heretofore

been an empirical model.

Middleton [Ref. 243 included the Gaussian noise term in

Eqn. 2-36 and expanded the characteristic function without

_'. taking the expectation. Then by inverting the char-

acteristic function term by term, a canonical form of the

envelope density function can be obtained. The exceedance

probability was then shown to be

Pr(r > ro)=
m

2 2 (-1) m ma ma
-ro El - rZ r A. r(i + ),F, (1- -; 2; r.)]

mO m' 2 2

e

(2-38)
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where &F, is a confluent hypergeometric function, and a and

A. are two parameters that are determined by the source dis-

tributions and the propagation law.
4.?

E. HALL MODEL EXTENSIONS

For later work in this dissertation a model for

atmospheric noise statistics is required. This section will

further describe the Hall model as applied to HF atmospheric

noise and will derive some extensions to it that will be

used to digitally simulate atmospheric radio noise.

The Hall model for the envelope statistics of radio

noise is
B-1 r

= (B - 1) y
2 2 ((0-1)/2)

(r + y ) (2-39)

and was chosen for a number of reasons. The most important %,

are: the Hall model is analytically tractable and shows a -e

good fit to the data. It can be obtained for certain values

of the parameter B, starting from the physically based

filtered impulse models. This was shown by both Giordano 4.

(Ref. 233 and Middleton (REf. 243. Additionally, Schonhoff

[Ref. 183 has related the Hall models to CCIR Report 332

(Ref. 253, the standard reference of first order statistics

of atmospheric noise. In the CCIR report the APD curves are

shown as a function of Vo . The parameter, Vo, is a commonly

used measure of the impulsiveness of atmospheric radio noise

and is defined as ,.

36
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2 1/2
E[r I

V = 20log
E~rJ (2-40)

where r is the amplitude of the received envelope. For

quadrature Gaussian noise VD = 1.05 dB and as the noise

envelope becomes more impulsive, VD will increase.

One problem in relating the Hall model to V& is that the

moments of the Hall model only exist for orders greater than

8-1. This means that for the Hall2 and Hall3 models, V is

undefined unless the model is modified. Two methods have

been proposed to do this. Hall's method IRef. 3] adds

another term to the envelope density function and multiplies

by a negative exponential term to reduce the tall oF the

density function and give finite moments. The advantage of

this method is that the density function exists from 0 to

infinity; however, the resulting density function is

complicated. The method proposed by Schonhoff CRef. 13]

truncates the Hall2 and Hall3 distributions above a set

level, Tp, and renormalizes the density function by picking

k such that

T.

k p(r)dr 1. (2-41)

0

The level, TP , is chosen to set a desired Vo for the

distribution. The constant k will be a function of D where

D (1 + (T,/Y) ). (2-42)
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The existence of the first and second moments for these two

distributions is then assured. Using this procedure

Schonhoff generated a family of distributions parameterized

by e that can be used to represent a wide range of measured

data. By matching the V4 ratio of the data to the dis-

tribution, a close fit to the APD is found.

An extension to the basic Hall model to be used in a

later chapter is the density function of a constant

amplitude sinusoid plus the assumed noise. This density is

analogous to the Rician density in Gaussian noise theory.

It will be used in simulating the performance of energy

detection receivers for the signal plus noise case. It was

derived in [Ref. 26) for the Hall2 model and it is derived

for the Hall3 and Hal15 models in Appendix C. For the Hall3

model the density function is

2 2 2 2
'. (r + A + y )2y rD -'

P(r) = r+A+ ) 2 rD(2-43)
4 22 22 2.2 2 4 2

(r - 2A r + 2A y 2+ 2y r 2+ A + y )(D - 1)

where A is the signal amplitude, y is a Hal13 noise

parameter and D is defined in Eqn. 2-42. Likewise the

density function for the Hall5 model is

4 2 2 .
2y r(b + 2a

p(r) = (2-44) bI-,
2 2 5/2

(a - b
where

2 2 2
a r + A + y

38
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and

b = -2Ar.

Fig. 7 is an example of the APD for a sinusoid plus Hall3

noise with the RMS value of the noise set to 1 and the

signal to noise ratio at -26, -6 and 14 dB. For the -26 dB

SNR case the APD is very similar to the Hall3 noise only

density shown in Fig. 6.

Commonly used functions relating to the Hall models are

shown in Table I. These are the envelope density function,

the 1st and 2nd moments of the envelope, the inverse of the

CDF, the quadrature marginal density function and the Hall

noise plus random sinusoid density. The parameter D in

Table I is defined by Eqn. 2-42 and the function SE[] is the

complete elliptic integral of the second kind. The quad-

rature components can be derived by transforming the

envelope density to rectangular co-ordinates and integrating

with respect to one component. The inverse of the envelope

CDF is also included since it provides an easy method to

generate random deviates.

Also useful for simulation purposes are the values of

the Hall parameters, 9 and y, for different values of Vo

normalized to a unit root mean square value. The truncation

point TP was found for a desired VO using an iterative tech-

nique. These parameters are shown in Table I.
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2

VO Hall No. E[n (t)3 Eln(t)] Tp y D

2.1 5 1 .785 - 1.01 -

3 4 1 .708 - .708 - "

4 3 1 .631 11.66 .420 27.76

5 3 1 .562 25.90 .364 71.05

6 3 1 .501 67.71 .321 211.1

8 2 1 .398 11.77 .085 137.6

10 2 1 .316 17.08 .058 291.0

12 2 1 .251 24.25 .041 587.1

14 2 1 .199 33.81 .029 1141.9 1

TABLE II

F. SUMMARY ,

Both empirical and analytical filtered impulse models

have been successful in explaining the first order envelope

statistics of bandpass radio noise processes. However, in

obtaining these results the assumption has to be made that

the impulse arrival times due to the noise process form a

Poisson point process. In general this will not be true for

man-made impulsive noise and for some types of atmospheric

noise [Ref. 273. In most cases of man-made noise the

underlying deterministic mechanism of the device causing the IV

noise will modulate or regulate the impulse distribution. 4'

The Hall model for atmospheric noise has been examined in "

42
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detail and some useful extensions to it have been derived

that will allow noise and signal plus noise environments to

be simulated.
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III. GAP NOISE MODEL

A. INTRODUCTION

In this chapter a specific source of man-made radio

noise will be modeled and specified in terms of the counting

process, N(t), and the probability density function (PDF) of
".oa',.

the impulses, p(a). These specifications were introduced in

the previous chapter to define the impulsive noise model.

The noise source that will be examined is gap type

discharges and is commonly found on electric power dis-

tribution and transmission lines. Gap noise is one of the

major types of interference from power lines and is -.ax

frequently observed as the primary interference to com-

munication systems operating in the high frequency (HF)

radio band.

B. GAP NOISE MECHANISM

At least two mechanisms have been found by which a gap

discharge process can occur on a power line. The resistance

in the line insulators can be degraded allowing current to

flow through the insulator base and creating a potential

gradient across any gaps or defects in the insulator "

mounting hardware. A second way in which a potential can be

created across an air gap is by an electro-static coupling

of the line potential to isolated hardware on the pole. In

both cases the potential across the gap is discharged by the

44
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voltage breakdown of the gap and the resulting rapid current

flow or spark. This process generates a radio frequency

(RF) noise impulse with spectral components extending into i.

the hundreds of MHz. During a single discharge, the

potential across the gap is temporarily diminished. How-

ever, while the fundamental 60-Hz waveform is still greater

than a threshold voltage, the process can occur again. The

spark will discharge across the gap repeatedly until the

alternating current waveform drops below the breakdown

threshold potential. [Ref. 28:p. 78,293

The spark discharge and recharging of the gap potential

indicates that this type of process is regenerative and can

be modeled as a renewal process where the renewal points are

associated with the sparks. One feature of gap noise that

complicates the modeling is the 120-Hz on-off-on modulation

imposed on the renewal points by the alternating current

(AC) waveform. One way to account for this effect is to

consider the turn on times as another renewal process driv-

ing the spark discharge process. This type of model is

known as a branching renewal process (Ref. 303.

The noise processes that were used to develop this model

were short term stationary in that the statistics of the

process did not change over the observation interval. Not

all sources of power noise are stationary even over a short

observation interval. Physical effects such as wind, solar

heating and varying line loads can act to make certain types

*~45
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of power line noise highly variable from observation to

observation. Although these types of noise were observed

during data collection, the data used to develop the model

was taken from noise sources that were stationary for the

length of the ten minute data records.

C. OBSERVED TIME-DOMAIN CHARACTERISTICS

The gap noise sources for this study were observed on

utility distribution lines in the vicinity of the Naval

Postgraduate School and were chosen to illustrate parameters

of the noise model. Fig. 8 is a typical time-domain observ-

ation of a gap discharge process observed at 3 MHz and

envelope demodulated with a 10-kHz Gaussian bandpass filter.

The important characteristics to note are:

1. the process has an on-off-on modulation at a 120-
Hz rate related to 60-Hz waveform of the power

line, and

2. the pulse groups that result from the modulation
have a probabilistic number of impulses occurring
in each group and a probabilistic interarrival
time between pulses in a group.

In the first pulse group, 9 pulses occur with varying
4,4

amplitudes and interpulse arrival times. In the second

% pulse group starting approximately 8.33 msec later, 8 pulses

% occur, again with varying amplitudes and interarrival times.

One group of pulses is associated with either the positive

or negative polarity of the line voltage waveform and the

other group with the opposite polarity. Identification of

46
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the polarity is impossible without physically locating the

source.

The average amplitude of the impulses will be one of the

parameters for the model. An estimate of this parameter can

be made from the above presentation. It is important to

note that for this highly impulsive type of noise that the

observed amplitude is a function of the shape and width of

the effective bandpass filter and the detector char-

acteristics.

At this point it should be noted that the model can be

approached at two levels of complexity. In the simple

version the data from both the positive and negative phases
SAO.+

is considered as a whole and averaged over the two phases to

determine a set of average parameters. In the more complex,

but more accurate model, two sets of model parameters are

determined - one for each phase. For the remainder of this

work the more complex case will be considered. The results

for the simple case are presented in Moose and O'Dwyer [Ref.

313 and can easily be determined from the complex case by

setting the parameters equal for both phases and simplifying

the resulting equations.

In order to better characterize the interpulse arrival

times, which will be used to determine two model parameters,

the rising raster capability described in the instru-

mentation section was used to generate the display of a

different gap noise source which is shown in Fig. 9. In

48I
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this picture the amplitude of each individual record was

reduced and thresholded so that all that essentially remains

is the time of impulse arrival data for 28 time records.

The time base of the display was intentionally synchronized

to the power line to facilitate taking data and this

accounts for the regularity of the pulse groups from

observation to observation. In this view the interarrival

times for 56 pulse groups (28 groups of one polarity and 28

of the opposite polarity) can be determined along with the

number of pulses in each of the 56 successive pulse groups.

The average number of pulses per group considered separately

for each phase will also be used as estimates of two model

parameters.

Fig. 10 is a histogram of the distribution of the

interarrival times between the observed impulses for the

same noise process shown in Fig. 9. To use this data to

generate parameters for the noise model, the histogram will

be approximated by a continuous density function. The gamma

density function [Ref. 32:p. 18)

r-1 -(Xt)
p(t) = X (.t) e /(r-I)! (3-1)

was chosen because it showed a close fit to the data, and

its characteristic function, which will be used in later

derivations, was particularly simple. The characteristic

function of the gamma density is

0(jw) = (1 - jWX) (3-2)
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The r and X parameters are simply interpreted in terms

of an underlying Poisson process as the time to the rth

point of a Poisson process of intensity X. If p is the

random variable assigned to the observed interarrival times

then the unbiased estimate of the mean of p is

N
est(p) = (1/N) E p (3-3)

and the unbiased estimate of the variance is I__

2 N 2 2
est( , ) = { p t - N est(p) }/(N-1). (3-4)

i=1

The unknown parameters of the desired gamma density function

are estimated using the method of moments [Ref. 33:p. 250) *% %

using the following relations;

2 2 2
r = est(p) /est(a, ) and X = est(p)/est(a, ). (3-5) .

Using this approach, the gamma density function used to

approximate the interarrival time histogram is also plotted

on Fig. 10. Figs. 11 and 12 are based on the same data as

Fig. 10. However, they are separated according to different

phases. It can be seen from the r and X parameters in Table

III that there is a significant difference between phases of

the same gap noise process shown in the histogram even

though the mean value of each data set was almost the same.

The data in Fig. 11 was more clustered than the Fig. 12

data. This results in a higher r and lower X parameter for
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the same mean value. Figs. 13 and 14 are additional sets of

gap noise data that were observed during the research.

Table III summarizes the r and X parameters fitted to

the data described above.

r

Case 1 33.2 37,000

Case 1 Phase A 63.4 71,400

Case 1 Phase B 23.3 25,900

Case 2 44.3 74,600

Case 3 14.1 19,200

TABLE III

A final model parameter will be called TD and is a constant

delay or offset of every second pulse group that exists with

respect to the fundamental voltage waveform.

In summary the inputs to the model based on time-domain

data are;

1. An estimate of the average amplitude of all
observed pulses.

2. An estimate of the average number of pulses per
group for each phase.

3. An estimate of the mean of the interarrival time
of the pulses for each phase.

4. An estimate of the variance of the interarrival
time between pulses for each phase.

5. An estimate of the delay in the start time of the
pulse groups of one phase with respect to the
fundamental voltage waveform.

%%
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The average amplitude of pulses from different gap noise

sources is highly variable, ranging from the instrumentation

noise floor to higher than any observable signal in the HF

band. The average number of pulses per group has been

observed to vary from 1 to greater than 20. The mean of the

interarrival times ranges from .1 to 1 ms and the

coefficient of variation (standard deviation divided by the

mean) of the interarrival times has ranged from approx-

imately .1 to .3 for the gap noise processes we have

observed.

D. MODEL DEVELOPMENT

The principal goal of this chapter is to describe a

noise model that, with suitable choice of parameters, pro- .

vides an adequate simulation of the actual physical noise

mechanism of gap noise. In this section the time-domain

data and parameters derived in the previous section will be
1

integrated into the filtered impulse model developed in

Chapter II. Recalling from Chapter II, a filtered impulse

noise process is given in complex envelope notation by

N(t) -.j8
n(t) = g(t) + E aie h(t-t1 ) (3-6)

i =

where p(a) is the amplitude distribution of the impulses,

N(t) is a unit counting process whose statistics determine

the impulse arrival times, 0 is a random variable uniformly
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distributed between 0 and 2n and h(t) is the impulse

response of the receiver filter.

In order to physically justify a filtered impulse model,

the impulse duration must be small compared to the inverse

bandwidth of the receiver filter. This condition is easily

met in the case of gap discharges. Laboratory analysis of

temporal characteristics of gap discharges for various

geometries shows that the impulse durations range from 10 to

100's of nano-seconds IRef. 34]. Therefore, for filter

bandwidths up to 1 MHz the output noise process will only be

a function of the incident time of the impulse and the

filter response, not the waveform of the impulse.

The specification of the statistics of N(t), the count-

ing process that drives the model is then crucial to

obtaining an accurate representation of the physical noise

process. Based on the electrical characteristics of a gap .

discharge and the observed time-domain characteristics, the

following assumptions are made;

1. A primary series of event times separated by an
interval T0 /2 exists. To is the fundamental a

period of the power line voltage waveform. The
distribution of the time to the first primary
event is uniform over 0 to To.

2. A subsidiary process commences at the primary
event times i.e. To/2 , To , 3T 0 /2 ... The
subsidiary process is a renewal process that
continues for N1 or N2 renewals alternating

between Ni and N2 renewals at successive primary
points.
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3. The interarrival times to the first and subsequent
points of the subsidiary renewal process for each
phase are all independent and identically
distributed (lID) within a pulse. Each phase has

its own set of parameters.

4. The weighting or amplitude distribution of all

impulses in the subsidiary process is a constant.

5. A constant offset or delay designated by TD may

exist at every second primary renewal point.

The first assumption is supported by the periodicity in

the data that is related to the fundamental frequency of the

power line. The large majority of observed gap noise sources

had pulse groups on both the positive and negative phases of

the fundamental waveform. This accounts for the T0/2 per-

iodicity.

The second assumption addresses the differences between

the sparking phenomenon on the positive and negative phases

of the fundamental. It is frequently observed that the

E[Nv,]J is different than ECNce,] where No-0a and Nuaa are

the random number of discharges in the pulse groups. This

can be due to two effects; an asymmetrical gap geometry and

the fundamental physical difference between the sparking

mechanisms for positive to ground and negative to ground

sparks. Two deterministic integer constants; N1 and N2 ..

nearest to E[NP-o J and E[N,1 a 3 ] respectively are assumed as

the approximation to the variable number of sparks per half

cycle of the fundamental waveform. N'
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The third assumption is based on the fact that the

"inception of gap discharges in natural air and the

development of electron avalanche are fundamentally

probabilistic processes that depend on atmospheric pressure, P.

humidity, presence of natural ions, electrode surface and so

on" [Ref. 343. In view of the above statement and -

considering the empirical data, the justification for devel-

oping the gap discharge as a probabilistic process is well

. founded. The assumption of independence from discharge to

.4 discharge is not as well justified. Effects such as

electrode heating after the initial discharge in a cycle

could act to make the average interarrival time vary from

pulse to pulse within a pulse group. However, to develop a

tractable model the assumption of independence between

arrival times is made. The gamma density function deter- .U

mined by the estimate of the mean and variance of the

interarrival times for each phase is used to define the PDF

of the interarrival times.

The fourth assumption concerns the amplitude of the

impulses. In most cases the amplitude of the impulses

within a pulse was nearly constant. In some cases there was

a difference in the average amplitude from negative phase to

positive phase, however to keep the model tractable the

amplitude of all impulses is assumed constant.

The fifth assumption incorporates an effect that will

explain one of the features observed in the power spectral
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density (PSD) of the observed process. The physical V

rationale behind this assumption is that there may exist a

difference in the threshold between the positive and

negative phases, thus consistently delaying or offsetting a.

the start of the renewal process on one of the phases.

The above assumptions place this model in a class of

processes known as branching processes with the main process ..-

-a. being a degenerate renewal process with an interarrival PDF

of %

p(t) = (t-To/2) (3-7)

The subsidiary process is a renewal process of Ni or N2

points. Consequently, the impulse source for the gap noise

model is completely specified by the following parameters:

a - Amplitude of the impulses,

NI,N2 - Number of impulses in the subsidiary process,

4.i, , - Mean value of impulse interarrival time,

Var(p ),Var(oa) - Variance of interarrival times,

To - Offset on one phase.

To complete an interference scenario NoBar/2 and h(t) must

also be specified. The expression for the branching renewal

-. process is then

-
M(T) N. -je

n(t) = g(t) + E E aZ . e h(t-t=.-T.) (3-8)

m=1 n=1

Fig. 15a,b shows sample realizations of the envelope,

E(t), of the noise process defined above.
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Figure 15. Envelope and Counting Function of n(t)

The Gaussian term was set to 0 and h(t) was approximated as

a decaying exponential. Note that in comparison to an

actual noise process illustrated in Fig. 8 the amplitude of

the impulses is constant with a fixed number of impulses on

the positive and negative polarity of the line voltage

waveform. Fig. 15c is the primary counting process, M(T),

driving the subsidiary process shown in Fig. 15b. Fig. 15b

includes a non-zero To and its relationship to M(T) is shown

in Fig. 15c.

Fig. 16 shows a realization of the envelope of this

* process for N1 and N2 = 3, T = 30 ms and gamma density

function parameters rl and r2 = 32 and X1 and X2 = 37,000.

Random interarrival times with a gamma distribution were
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approximated by summing exponentially distributed random

variables [Ref. 35]. The impulse amplitudes were normalized

to one and a background level of quadrature Gaussian noise

at NB/2= .0001 was added which simulates either receiver

noise or high density, low amplitude impulsive noise.

E. COMPARISON OF CALCULATED AND OBSERVED DATA

One partial description of a noise process is the

amplitude probability distribution (APD) of the envelope.

This description has been used extensively in the analysis

of noise and in deriving optimum receivers. For the N(t)

specified in the previous section this calculation would be

difficult. A second noise process descriptor is the

spectrum of the noise process. This descriptor is suited to

our model where the structure of the noise is contained in

the counting process that drives the impulse generation. In

addition to receiver noise performance evaluation, spectral

analysis can also be used for noise source identification

and isolation [Ref. 36].

In order to determine the spectrum of the envelope

squared of the branching renewal process defined by Eqn.

3-8, the spectrum of the envelope squared of a non-branching

op

renewal process is determined in Appendix D. The results

obtained in Appendix D are then used to derive the spectrum

of the the branching renewal process which is postulated to

model gap noise. Starting with the branching renewal

65.
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*" process given in Eqn. 3-8, and assuming g(t) is equal to 9

zero, it is shown in Appendix E that the average of the

Bartlett estimate of the PSD is:

2 5
S(W,T) = IHa(w)I /T E Term (n) (3-9)

n=1

where n is an index to the 5 Terms defined below. These

five Terms involved in the summation in Eqn. 3-9 are defined

as follows:

Term 1 - The inter-pulse group summations between pulses in

pulse groups with N1 pulses

Term I = M2 f(w,N1) (3-9a)

Term 2 - The inter-pulse group summations between pulses in

pulse groups with N2 pulses

Term 2 = M2 §(w,N2) (3-9b)

Term 3 - The intra-pulse group summations between pulses in

groups with N1 pulses

cos(M2 2nW/W.) - 1
Term 3 = { - M2 } QW(,Nl) (3-9c)

cos(2nW/ .) - 1

Term 4 - The intra-pulse group summations between pulses in

groups with N2 pulses

cos(M2 2nw/w.) - 1
Term 4 = { - M2 } Q (,N2) (3-9d)

cos(2nw/w. ) - 1

Term 5 - The intra-pulse group summations between pulses in

groups with NI pulses per group to pulses in groups with N2

pulses and vice versa
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cos(M2 2nw/w.) - 1
Term 5 = 2cos((w(T./2-To))( }i(0,,NI,0,,N2)

cos(2w/w. ) - 1
(3-9e)

where 0, and 0. are the characteristic functions associated

with the interarrival times for each phase. The parameters

Ni and N2 are the number of renewals associated with each

phase and §, q, and W are defined below:

2 N
N - NIO(jw) I 0(W) (1 - O(QW)

§(O,N) = - 2 Ref .,

2 2
I - 0(jw)I (1 - O(QW)) (3-10)

N+I 2
0( W) - OQW) I

SI(O,N)
2

Ii - 0(jW)j (3-11)

and

N1+1 N2+1

(0, (.W) - 0 (jw) ) (0. (-jw) - 0. (-jw) )
W(0,,N1,0.,N2) = .

(1 - 0 (JQW)) (1 - 0, (-jw))

(3-12)

As a test of tho model the PSD of the gap noise process

shown in Fig. 9 was determined using a spectrum analyzer and

also analytically determined using only the model parameters

from the time-domain data and the methodology of the

previous section. Fig. 17 is a computer plot of the

analytic estimate of the PSD which is compared with the

observed PSD computed on a Wavetek UA500A spectrum analyzer

shown in Fig. 18.
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The components of the spectrum due to the different

terms is of interest and offers some insight into the

origins of the features of the observed spectrum. The dom-

inant feature of the observed spectrum are the periodic 120

Hz spectral lines. At 800 Hz the spectral lines change, and

appear as odd harmonies of 60 Hz, however, still remaining

at 120 Hz intervals. Terms 3 - 5 are responsible for the

those spectral line features. Each of these terms is a comb

function, determined by the -Fundamental frequency and

observation interval, multiplied by an envelope determined

69
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by the interarrival time distribution. Figs. 19 and 20 are

Terms 3 and 4 respectively and clearly show the phase to

phase difference. The more peaked behavior of Fig. 19 at

1100 Hz is due directly to the more clustered interarrival

time behavior on one phase. This effect was observed in the

time domain in Fig. 11. When the terms shown in Figs. 19

and 20 are added together, they form 60 Hz harmonic spectral

lines and when Term 5, shown in Fig. 21, is added, positive

reinforcement occurs at 120 Hz and negative at 60 Hz

harmonics. This produces the observed 120 Hz harmonic

spectral lines. When the cancellation is not complete due

to differences in the characteristic functionfrom phase to .

0 .
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phase, small 60 Hz components can be present. This effect

is seen in both the observed and predicted spectra.

The observed spectra changeover from 120 Hz harmonics to

odd 60 Hz harmonics at 800 Hz is also correctly predicted by

the model. This effect is due to the factor, To, appearing

in Term 5 which causes the odd 60 Hz harmonics to be

positively reinforced and the 120 Hz harmonics to be

canceled out above 800 Hz. The final effect shown in the

model and seen in the observed spectra is the presence of

continuous spectral components. The continuous spectra due

to Terms 1 and 2 is shown in Figs. 22 and 23 and also

differs from phase to phase. The continuous spectra peaks

markedly at 1100 Hz and this effect is apparent in the

observed spectra as a rise in the noise floor. The con-

tinuous spectral term arises when Term 1 is added to Term 3

and Term 2 to Term 4. The peak value at 1100 Hz in Terms 1

and 2 is greater than the negative values in Terms 3 and 4

at the same frequency and when added together causes a

continuous rise in the spectral floor. The reason for this

is that the i to i+1 and i-1 interarrival times within a

pulse group are more correlated than the corresponding

interarrival times between different pulse groups. The more

correlated arrivals appear in Terms I and 2 and cause the

spectral peak to be larger.
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F. SUMMARY 5%

nine parameter model for a single source of gap noise

interference was developed and shown to accurately predict
,.,.

the PSD of narrow bandwidth envelope demodulated gap noise

interference. If less accuracy is desired, phase to phase

differences can be neglected and the resulting model has

only five parameters. The model was specified in terms of

an impulse driving function, and techniques to estimate the

model parameters from time domain data were described.

Since the model specifies a complex driving impulse function

it can be used as a simulated interference source for

arbitrary filters and receivers.
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IV. CORONA NOISE MODEL

A. INTRODUCTION

In addition to gap noise which was discussed in Chapter

III, another major source of power line radio noise is

corona noise. Corona is different in many respects from gap

noise, and the model used to describe it will take a

different approach. In contrast to gap noise, which is

observed on both electric power transmission and dis-

tribution lines, corona noise is observed only on power

transmission lines and generally has a fundamental frequency

of 180 Hz corresponding to the three phases of a 60 Hz

alternating current (AC) system. Corona'noise is caused by

a partial breakdown of air surrounding a conductor which is

at a high potential. Consequently, the impulsive structure

of corona noise is not as well defined as the highly

impulsive structure of gap noise. Corona noise from AC

sources appears somewhat like amplitude modulated Gaussian

noise.

8. CORONA NOISE THEORY

When an increasing potential difference is applied

between two electrodes, a breakdown voltage is reached that

is characterized by the transition of air from a poor

electrical conductor to a good conductor. If the field in

the gap between the two electrodes exceeds the electric
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strength of air, which is about 30 kV/cm for gaps over 1 cm

a.%

in length, prior to the spark breakdown voltage, then corona

will exist. Sharp points and small radius wires are avoided

whenever possible on power lines, and corona generally does

not become a significant source of radio interference until

voltages exceed about 70 kV [Ref. 28:p. 843.

As the voltage on an AC line is increased, corona will

appear and be associated with either the positive, negative

or possibly both half-cycles of the fundamental waveform.

For an aged, clean transmission line it appears that the

threshold voltage for negative corona is less than that of

positive corona. If the transmission line has any unusual

characteristics, the threshold voltages of positive and

negative corona become difficult to categorize [Ref. 373.

In particular, it has been observed that positive streamer

corona, which is more disruptive of communications fre-

quencies than negative corona, predominates on newly

installed lines and during periods of precipitation. For

modeling purposes, the important characteristics of corona

noise are not a precise description of the physical

mechanisms but the relationship between the observed inter-
.*%
.,3

ference waveform and the line voltage.

The procedure most commonly used for the prediction of

interference due to corona noise gives the noise power as a

function of the characteristics of the interference

scenario. The random properties of the corona noise are
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averaged out [Reof. 38. These characteristics would

commonly include distance from the line, the line voltage

and a weather correction term. Each of these terms is

experimentally verified and related to some physical process

in the generation of corona noise. While this procedure

gives an estimate of the noise power in a specified

bandwidth, it does not incorporate the probabilistic nature

or time-domain periodicity observed in the noise. b

The approach taken in this chapter will continue with

the filtered impulse theme of the dissertation. For corona

noise, the counting process, N(T), will be modeled as a

periodically modulated stream of impulses. This approach

will have the advantage of being accurately able to simulate

the time- and frequency-domain behavior of corona noise.

However, as with the gap noise model it will suffer from the

disadvantage that for each scenario, a set of parameters

must be experimentally determined.

C. TIME DOMAIN CHARACTERISTICS

The time-domain data for rorona noise was obtained using

the instrumented van described in Appendix A. The antenna

was a 3-meter whip mounted on the van (which was parked

underneath a 3-phase 500-kV transmission line). The weather

* conditions at the time of measurement were clear and sunny.

* Records of the corona noise were obtained using the envelope

detected output of the HP-141T described in Appendix A and
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recording the data on a 20-kHz bandwidth, 85-dB dynamic

range digital audio system. The recording process allowed

subsequent analysis in the laboratory.

A 37-ms portion of a data record is shown in Fig. 24.

The data was taken at a 300-kHz center frequency and 10-kHz

intermediate frequency (IF). This particular picture was

obtained by playing back the tape, re-digitizing the data

and displaying it with a signal-analysis software package.

One of the important features of the time-domain record in

Fig. 24 is the periodicity. The fundamental frequency of

180 Hz can be determined from a periodic rise in the mean

value of the noise and from a periodic increase in high-

amplitude impulses. The fundamental noise frequency of 180

Hz on a three phase line indicates that the dominate noise

is generated on one half-cycle of the fundamental 60-Hz

waveform on each of the three phases of the line. This is

consistent with low-level negative corona predicted for aged W

lines in clear weather.

The periodogram spectrum of the data record described

above is shown in Fig. 25. The time-domain observations of

the 180-Hz periodicity are confirmed and a 360-Hz harmonic

of the fundamental is also present. At higher frequencies,

no harmonics are observed and the spectrum becomes white.

This is in distinct contrast to the gap noise described in

Chapter III where the spectrum of gap noise has harmonics

well into the kHz range. The periodicity can also be seen
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in Fig. 26 (which is the same data recorded on the 3-Axis

display). The contribution of each phase of the power line I.

to the total corona noise process can be clearly seen in the

lower picture in Fig. 26.

Another important feature of the data for modeling

purposes is that the receiver response to an individual

impulse overlaps with the response of preceding impulses.

Although the noise is still impulsive, the simplifying

assumption of non-overlapping pulses is not valid. It is

seen in Fig. 24 that the amplitude of the impulses is random

and there is no fine-grain interarrival time structure other

than the periodicity discussed above. Both of these

observations are in direct contrast to gap noise where the

amplitude from impulse to impulse is almost constant, and

there is a definite impulse interarrival time structure.

These observations provide a method to distinguish between

gap noise and corona noise.

An interesting aspect of noise from transmission lines

was noted while taking measurements for the corona model.

It was difficult to obtain a recording of power-line noise

in the vicinity of high voltage transmission lines due only

to corona noise. In many cases, a gap noise component was

superimposed on the corona noise. This can be seen by

comparing Figs. 26 and 27. Fig. 27 is a view of both gap

and corona noise. The corona noise amplitude peaks at the 2
1.0.

pV level, and the amplitude of the gap-noise impulses is
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about 3.5 pV. The two lower pictures are of identical data

with the threshold varied to emphasize each noise type. The _

lower picture has the threshold sot at about 3 mV

eliminating the 180-Hz corona noise and showing the gap

noise process occurring at a 120-Hz rate. This corresponds

to a gap noise source sparking on the positive and negative

half-cycle of a single phase of a 3 phase line. When the

threshold is lowered to about 1 pV, the 180-Hz corona noise
4.-

dominates as seen in the middle picture of Fig. 27. This

phenomenon is due to corona discharge on the negative half-

cycle of each phase of a 3-phase system. Without the abil-

ity to examine the time- and frequency-domain behavior of

the noise using a scanning analyzer and 3-Axis display, it

would be very difficult to differentiate between gap and

corona noise and make accurate measurements of either.

Fig. 28 illustrates corona noise with different phase-

to-phase characteristics. In this example the noise power P

due to the corona is unequal from phase to phase. The noise

occurring on the dominant phase is approximately twice the

peak voltage of the phase with the lowest amplitude.

* 4.
D. CORONA NOISE MODEL

Based on the above observations of the demodulated

envelope of corona noise, a specific filtered impulse model

based on Eqn. 2-18 will be developed. This model is similar

to models used in synthetic hydrology to account f or
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seasonal variations in streamflow data CRef. 393. Assuming

no Gaussian noise component, a lowpass complex filtered

noise process can be written

N(t) -je,
n(t) = r ate 6(t-tt). (4-1)

i-1

Since corona noise is a high density process, the envelope

cannot be simply defined as in Eqn. 2-22 since the response

of the filter to adjacent pulses. will overlap. To cir-

cumvent this difficulty it will be assumed that the envelope

of n(t) can be modeled by

N(t)
e(t) = E aig(t-ts) (4-2)

i=1

where both e(t) and g(t) are real, positive and g(t) depends

on h(t) and the process intensity.

The assumptions to define the model are as follows;

1. The rate parameter for the counting function N(t)
is periodically modulated at frequency wo and will
be approximated by a finite number of terms in a

Fourier series.

2. The amplitude distribution of successive pulses
given by the a, 's are independent and identically
distributed with density function p(a).

3. The start time of the periodic modulation is
uniformly distributed over the period To where To
= i/w.•

Assumption one is motivated by the periodicity observed in

the data. In most cases the fundamental period, wo will be

180 Hz. If the noise is more dominant on one phase of the

line, as shown in Fig. 28, then 60 Hz components of the
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noise will exist and for a more accurate model the

fundamental period would be 60 Hz. The rate parameter is

given by

N,
X(t) = Er a. cos(went) (4-3)

n=O

where N, is the order at which the Fourier series is

truncated.

The second assumption is arbitrary in terms of the

distribution function chosen for the impulses. It is

obvious that random impulse amplitudes are being generated

by the cumulative effect of the corona noise sources.

However, it would be difficult to accurately fit a density

function to the data due to the time varying nature of the

process. The independence of the amplitude bursts is also

conjecture but facilitates the development of a tractable

model. The Rayleigh density function is

2 p

-a /2S8
p(a) = (a/B)e a a 0

M 0 a < 0 (4-4)

and was picked to model the random amplitudes. It is

analytically tractable and can be justified by assuming the

quadrature components of the impulse amplitudes are in-

dependent Gaussian events.

The final assumption is made because in most

interference scenarios, the power line noise process will

not be synchronized to the process being interfered with.
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Thus the phase will be effectively randomized over one

fundamental period. In some of the observations of corona

noise (see Figs. 26-28) this assumption was clearly violated

and the instrumentation was intentionally synchronized to

the power line for clarity of presentation.
F

The model could be further generalized by allowing the--0.

amplitude density function p(a) to be a periodic function of 'N

time, p(a,t) independent of the rate parameter. This added

complexity would make the model more accurate; however, more

parameters would have to be estimated.

The above assumptions classify this process as a %

compound non-homogeneous filtered Poisson process. A con-

venient tool to study these processes is the cumulant

generating function [Ref. 41:p. 1173

se(t)
(s)= ln{Ete ]} (4-5)

where In is the natural logarithm. The joint cumulant gen-

crating function is

St e (t, so e s(ta

4i(s , ss) = In{ Ele ]}. (4-6)

For the noise process defined by the first two assumptions,

it is shown in Appendix F that .

C " sah(t-)
W(s= p(a) X(a) C e - l]dada

SQ

(4-7) '.
and %
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I r ~s, ah(tj -a) + swah (to -a) "
.,JJ

((s, st p (a) X(a) I e - 1]crada.

-, -o (4-8)

From the properties of the cumulant generating functions it .'.-

can be shown that

Ete(t) = W'(0), (4-9)

VarCe(t)] w''(O) (4-10)

and

Cov(t, to) - (4-11)

'ass lose

It is straightforward to show that

N ...

NY
Ere(t)) = Eral r a.cos(wona)h(t-)de,

n=1

(4-12)

I.'

2 N, 2
Vare(t)] = 3 Zr acos(wona)h (t-a)d

n1l

(4-13) .

and

CovCt,toJ I ECa - .cs(on)h(,-x t a a

(4-14)

The autocorrelation function can be found in terms of the

above functions as

R(t, ,ta ) = Cov(ti ,te ) + Ele(t )JEle(to )]. (4-15)
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The above equations, prior to the application of

assumption 3, define a wide sense cyclostationary process

[Ref. 403 where

E[e(t + mT.)] = E[e(t)] (4-16)

.and

R(t, + mTo ,t. + mTo) = R(t,,t.). (4-17)

The statistics of the process are invariant to a shift of

the time origin by integral multiples of the period, To.

This characterization is particularly appropriate when the

process is observed in synchronization with the fundamental

power line frequency.

When assumption 3 is applied, the process start times

are randomly shifted over one period, the process becomes

wide sense stationary and the moan and autocorrolation

become

To
- 1 V
Eln(t)] = - E[n(t)] dt (4-18)

To
0

and

ToI

R(-) = - R(t+-r,t)dt. (4-19)
To

0

The power spectral density (PSD) of the process is

%m

S(W) = R(,)e d&. (4-20)
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The following algorithm is an example of how the noise

process specified above can be digitally generated. For the

algorithm specified below; No is the number of samples in

one period To, {n,> is the real sequence to be generated, i

is the index variable for the sequence and j and k are dummy

index variables.

1. i =

2. n(i) 0

3. Generate a Rayleigh random variable, R, with
parameter 8 and set n(i) = n(i) + R

Ny
4. Set intensity X = Z a.cos(weni/N0)

n=O
5. Generate a Poisson random variable, P, and set j =

trunc(P/X + .5)

S. Set n(k) -0 for k i + 1 to ,

8. Go to Step 3

The above algorithm will continuously generate a modulated

Poisson impulse process that may be digitally filtered V

concurrent with the impulse process generation or subsequent

to the generation of a complete time record.

Two additional points should be noted. A number of

'5

impulse amplitudes could stack up on each other if the '

truncation operation returns a zero value. This corresponds

to the physical case where multiple impulses occur and are

unresolved within one sampling period. Before a record of
C.i

noise samples generated by the above process is used a

*4* 91



truncated uniform random variable between 0 and N,, the sampled 0

period, should be subtracted from i. This ensures that the

start time is uniformly distributed over one period.

E. PARAMETER ESTIMATION

Having specified the model, the task of determining the

parameters for a given interference scenario remains. The

parameters to be determined are the (a.), the Fourier Series

- - coefficients of the periodically varying rate function and

the B parameter in the probability density function of

impulse amplitudes. As an example, the parameters for the

noise process described in the time domain observations

Section will be determined. ,

One method of estimating these -parameters is by

% considering the predicted mean and variance of the process

as given by Eqns. 4-12 and 4-13 and matching these

parameters to the data. In order to do this analysis, the

corona source has to be observed as a cyclostationary

process. This requires synchronizing the data collection

", instrumentation to the line frequency so that the same point

in each cycle can be examined. This is difficult to do for

field measu-oments.

Another option for determining the model parameters is

the predicted stationary mean, variance and PSD or auto-

correlation function. The PSD as defined in Eqn. 4-20 is

stationary so no line synchronization is required and
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instrumentation is readily available to make a periodogram

estimate of the PSD.

For the measurements taken in this research, the lowpass

impulse response of the filter was approximately

2

h(t) = (/n)e t 2 0

=0 <0. (4-21)

With the above definition the filter has unity gain at w

equal to 0. The effective filter response g(t) was approx-

imated by h(t).

In Appendix G it is shown that

-.i 22
-we n

1/2 N, 4a
ECe(t) l (3n/2) r e a cos(wont) (4-22)

n=O

1/2
where (nS/2) is the first moment of p(a), the probability

density function of the impulse amplitudes. The stationary

mean is

1/2
Ele(t)J i (8n/2) ao. (4-23)

The covariance of e(t) is shown to be

2.4,
. . -a (t, -t, ) /2

Cov(t, ,t.) - (/n)213e

M 2

. N, -2au
J a.cos(wen(u+(t, +t. )/2)e du.

It, -t, I (4-24)
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Using Eqns. 4-15 and 4-19 and substituting the above

results, the stationary autocorrelation function is

2
-a-T /2 1/2 2

R(7) = 213 Ce aoC(a/8n) + (1/4)ao

2 2
-WO n

N, 4a 2
- (1/8) r e a0 cos(w-0 n7)].

n=1
(4-25)

Taking the Fourier transform, the resulting PSD is

2
1/2 -w /2a 2

S(w) = 213 C(2) ao e + (rr /2)a* 6 (w)

2 2
-wo n

N, 4a 2
+ (n /8) Z e a. (w t nw 0 ).

n=1
" (4-26)

4 The terms in the PSD in order are; (1) a white noise term

multiplied by the frequency response of the Gaussian -ilter,

(2) an impulse at w = 0 from the mean value of the procoss

and (3: periodic components at harmonics of 180 Hz due to

the modulation of the driving function.

To estimate the model parameters, the sample mean ano

mean square estimates were ised in conjunction with Eqns. 4-

23 and 4-24 to solve for a0 and S. The periodogram estimate

of the spectrum was used to determine the magnitude of the

a, and as co-efficients. The Fourier series was truncated
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at NT = 2 since no higher order terms were observed in Fig.

25. For the data taken in Fig. 24 and 25 the parameter a in

Eqn. 4-21 was 7.11x106. Table IV lists the parameters of the

assumed model.

Coefficient of Gaussian Filter 7.11x10

Amplitude Density Parameter 1.5axle",

Fourier Co-efficients of Rate a, 22,300
Function

at 5,700

ae 2,500

TABLE IV

These parameters were inserted into the algorithm described

previously for generating corona noise, and five cycles o-F

the synthetic noise are shown in Fig. 29. Comparing the

actual noise in Fig. 24 and the generated noise in Fig. 29.

the generated noise correctly models the random, impulsive . 1

character of the actual noise and also its periodicity. The

synthetic noise, however, does not incor-porate the constant

bias above the 0 level seen in the actual noise.

F. SUMMARY

This chapter has presented a detailed analysis of the

time- and frequency-domain behavior of corona noise. A

model for synthetic corona noise was postulated based on a

filtered non-homogeneous Poisson process. A methodology for
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consequently, the model is not as general or as accurate as a

th* gap noise model.
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V. ENERGY DETECTION RECEIVERS

A. INTRODUCTION

Energy detection receivers in the high frequency (HF)

radio band operate in an impulsive radio noise environment.

To predict and improve the performance of energy detection

receivers, accurate models of the signal and noise envir-

onment must be used. The noise models developed in earlier

Chapters will be used to simulate atmospheric and man-made

radio noise environments. Two types of energy detection re-

ceivers will be considered: a fast Fourier transform (FFT

processing system and a compressive receiver. To improve

the performance of these receivers the concept of the

locally optimum receiver is introduced to suggest a robust

post-detection processor.

.,

B. ENERGY DETECTION

The energy detector receiver measures the enery in a

signal over a specific time interval. For this chapter we

will consider the signal to be a modulated sinusoid, of un-

known frequency at the receiver. The signal is then

represented as

s(t) = Acos(w.t + 8(t)) (5-1)

where A and w. are random variables and 8(t) is a slowly

varying function so that the signal power is effectively V

confined to a narrow bandwidth 8. i
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r

Defining the problem as a hypothesis test r

H. : X(t) = n(t) noise alone

*HI: X(t) = n(t) + S(t) signal plus noise. (5-2)

The well known energy detection receiver IRef. 42] uses taco,

the received energy as the test statistic such that

T

Under H.: to =, n (t)dt

0 ~1%

T

Under H, : teD Int =t]ct

For a sampled bandpass process the test ztatistic is

N 2 2
H.: tE, Z I nc, + no, 3

N 2 2
*H,: tob c, E Inc + sc 3 + [no, i so~ 35-

1=17
and

Xc, i n~c, Sct or xc, = nc,

h%
and likewise for the quadrature component.

Fig. 30 shows the block diagram of a receiver that cal-

% culates this statistic. This receiver will be called a

square and sum receiver. The square and sum receiver is trne

optimum receiver for detecting random phase signals ~n

Gaussian noise at small signal levels. At large signal to

noise ratios (SNR) this detector is very close to optimum

-. 4 99 4
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Figure 30. Square and Sum Receiver

IRE . 9:p. 370]. When N = T an d the signal is sam le d at

Sthe Nyqu ist rate , t he est stat ist ic s the energy in t n

, signal in a period T.

When it is desired to implement the eceiver shown in O

' F ig . 3 0 o v e r a w i e fr e q u e n c y b a n d r e l a t i v e o t h e a r g e --

• s gna l modu lat ion an d wdt h , a num ber o f opt ions may e

Spursued. The hann lized ece ver app oa h n whlC M an

independent receiver 
oerates at each requency will oten

e too ex ens ve. Two other possible me ho 
s fo r generating

_ t he t es t s at st c are ; ( ) a com pr ess ive ec e ve r as a

,, spectrum analyze r [Re . 43] and ( ) a as t Fourier transform

i' (FFT) signal processor.
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It has been shown that an FFT signal processor exactly

implements the test statistic given in Eqn. 5-3 for the

assumed signal in a single FFT filter ERef. 44]. Whether

successive samples will be independent or not depends on the

number of transforms per second relative to the signal

%bandwidth B. If the sample interval is greater than 1/B
%

then successive samples will be independent.

In the compressive receiver, shown in Fig. 31, a fast

sweeping local oscillator linearly scans the band of

interest. Any narrow bandwidth signal in the band will

appear at the mixer output as a linear, frequency modulated L

(FM), chirp signal. This chirp signal is passed through a

weighting filter to reduce sidelobes and into a dispersive

delay line (DDL) which is matched to the inverse of the

linear FM sweep. The output of the DDL is envelope detected

and, when referred to the sweep time, it provides an

estimate of the spectrum of the input signal. It is easily

shown that for a sinusoid, the detector output is

proportional to the signal magnitude. Thus, the compressive

receiver approximates the square root of the ith value of

the test statistic in Eqn. 5-3. The samples will be

independent if the scan revisit time is greater than 1/B.

C. SQUARE AND SUM RECEIVER

In this Section the energy detection performance of the

square and sum receiver, shown in Fig. 30, will be examined
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as the noise statistics depart from a Gaussian distribution.

The square and sum receiver, which is optimum for small

signals in Gaussian noise, will be used as the reference

receiver so that the performance of improved receiver

structures may be evaluated.

The number of samples, N, chosen for this study was 10.

This is a small sample size and, for impulsive noise, the

resulting test statistic will have a distinctly non-Gaussian

distribution. In Fig. 32 the probability of false alarm

(Pp,) is plotted for unit root-mean-square (RMS) Gaussian

noise and the Hall models with VD equal to 2.1, 3, 5 and 12.

(see Table II). The normalized threshold is in reference to

the unit RMS power of the noise.

A Monte Carlo simulation technique was used to obtain

the data for the plot. Since the data are independent

Bernoulli trials with a large number of trials, the normal

approximation to the binomial was used to determine the

confidence interval. For estimates of PPA greater than 5 x

10-3 with 20,000 trials, the true value of Pp, will be

within 20 percent of the estimate with a confidence of 95

percent IRef. 55:p. 282]. The noise samples were generated

using the inverse method [Ref. 45:p. 951] and the inverse

cumulative distribution functions (CDFs) in Table I.

In Fig. 33 the probability of detection (P.) curves are

plotted for PI, equal to 1x10-. A rejection method [Ref.

45:p. 952] was used to generate the random deviates since
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the CDFs of the signal plus noise densities were not found.

The PD is plotted as a function of SNR for the same

parametric conditions as used in Fig. 32. As anticipated

the P0  decreases dramatically as the noise becomes more

impulsive. In the case where V0 equals 12, the Po decreases

from greater than 99 percent to 1 percent at a 5 dB SNR for

the same PF A

A receiver that is optimum in Gaussian noise suffers a

major degradation when the noise statistics become non-

Gaussian. One possible approach to improving the per-

formance is to design a receiver that is based on the
-4.

statistical parameters of the noise. A parametric approach

will be discussed in the next section.

D. LOCALLY OPTIMUM RECEIVER

The concept of a locally optimum receiver provides a

general methodology for nonlinear receiver design in the

presence of non-Gaussian noise. The approach is to

determine a receiver structure that is optimized for the

difficult small signal case and then examine, and iF

necessary, modify the structure for the large signal case.

In this Section the locally optimum receiver for energy

detection in the presence of Hall type impulsive noise will

be determined under the assumption of weak signal levels.

Previous work has considered known signal detection in

Cauchy noise which is related to one of the Hall models

106
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[Ref. 463. After optimizing the design for weak signal

levels the performance of the receiver will be examined for

moderate to large signal levels. The receiver structure

will be parametric; that is it will depend on the noise

density function parameters.

To illustrate the method for deriving the locally

optimum receiver, consider the following binary hypotheses

test. We are given a sequence, x,, of N samples. Under the

null hypotheses H., we assume that the sequence consists

only of independent and identically distributed noise

observations with a common density p(n). Under the

alternative hypothesis H, , we assume that the sequence

consists of an additive mixture of a small signal and noise.

The problem may be stated as

H. xL = n, noise alone

H, x, = n, + As, signal plus noise i = 1,. .,N

with A an unknown small amplitude.

The optimum receiver, in terms of maximizing the

probability of detection while keeping the probability o.

false alarm below a certain level is given by the Neyman-

Pearson lemma. This receiver compares the likelihood ratio

test statistic to a threshold which is chosen to achieve the

desired probability of false alarm.

The liklihood ratio test is

p.(xIH.) > T decide H., or
A(x;A) = (5-4)

p, (xjH,) < T decide H,
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where p. (xH.) and p1 (xIH) are the probability density

functions for the observation vector x under H. and H, L
i.#
N.

respectively. Since the noise samples are independent and

identically distributed, p. (xlH.) and p, (xlH1 ) can be

written as products of the univariate noise densities:

N
po (x) = 11 pi (x,) (5-5)i=1 _'-

and

N .4'

p (x) 11 p,(x, - As,). (5-6),
i• 1

The test can then be written

N
[1 pi (xi - As,) > T decide H., or

4.i=1

A(x;A) =
N

n] p1 (x1 ) < T decide H,. (5-7) .4.

i=l

In deriving the locally optimum receiver several -

approaches have been used. Rudnick [Ref. 47) derived a form

of the locally optimum receiver by expanding the likelihood

ratio in a Taylor series about x and truncating after the

second order terms. Capon ERef. 48) showed that the locally

optimum detector maximizes the slope of probability of

detection versus signal strength function at the origin and

employs a statistic based on the following test r
oA(x;A)

t,*(x) = (5-8)
1oA A => 0.
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In Appendix H it is shown that the locally optimum

receiver for the detection of a random sinusoid is

N
t'Lo () = g(r,) (5-9)

i=1

where g() is the zero-memory nonlinearity (ZMNL) defined

below

f''(r) f'(r)

g(r) =+ (5-10)
f(r) rf(r)

and r is a vector of envelope samples. The function, f(r),

for the Hall model of atmospheric noise discussed in Chapter

II is

e-I

Ky
f(r) = (5-Il)

2. 2 (9-1)12
(r + y )

where K is a constant. From Eqn. 5-10 the ZMNL of the test

statistic is

(0+1)(0+3)r 2(8+1)
g(r) = - (5-12)

2 22 2 2
(r+y) (r +Y)

The receiver that implements this test is shown in block

diagram form in Fig. 34. The ZMNL's for the unit root-mean-

square Hall models (see Table II) parameterized by Vo are

shown in Figs. 35 and 36. The ZMNL receiver characteristic

for values of VD equal 2.1, 3, 6, 10 and 14 are plotted.

Recalling that the nonlinearity is optimized for van-

ishingly small signals the ZMNL characteristic may be V

109
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H,

. Yes

P °'4..

NN

H.

Figure 34. Locally Optimum Receiver for Energy Detection

intuitively analyzed. Small values of the sampled envelope

will be given a negative weighting, intermediate values are

emphasized and large values of the sampled envelope are

effectively nulled. As the noise becomes more impulsive,

which corresponds to a larger value of Vo and smaller 8, the

above features become more pronounced. This is seen in Fig.

35 where the ZMNL has large negative values that extend off

the plot for very small envelope values. The maximum value

of the ZMNL occurs at

1/2
x y((8+5)/(8+1)) (5-13)

and the zero crossing at

1/2
x = Y( 2 /(9 1)) . (5-14)

Both of the points are proportional to the mean value of the

underlying distribution for the same Hall model number.

110

%~ %

' " . .. . . . .. I' !



4J"

14 m

(ID.
0* 4D

0 _j

0 *19

4.)

.4 z

00

*411>

0 1

N 44

0~

-J
4.,OO 410T000 los 00 oos- 00- .roz

_ _W _ _w id _ _ Noo



S..

00

c PS

4.

0

00

c,1%

0 d

LU

IN X
CD1

O~ov oloz 0*0 oloz olo- 009- *Z9
INWZ nwndoo~uo0



Fig. 37 is the PA versus threshold for the locally

optimum receiver shown in Fig. 34. The number N of samples

is equal to 10. The Hall noise samples are parameterized

with the same Vo values used in Fig. 32. The threshold data

obtained from this plot was used to generate the PD curves

shown in Fig. 38. The only complete data set was obtained

for the Hall2 case with Vo equal to 2.1. Some data was

obtained for V equal to 5. The peaks in P, for the more

impulsive noise occur at smaller SNR levels, not shown on

the plot. The data points are plotted on the graph since

the dashed curves only approximate the true values.

It can be seen that the locally optimum receiver does

improve the PO (for the same PA) in the small signal case.

In comparing the values with Fig. 33 for Vp equal to 2.1 the

locally optimum receiver has a performance better than the

square and sum receiver from -10 dB to 7 dB SNR. Above 7 dB

SNR, the PD for the locally optimum receiver drops to 0.

This is due to the fact that the receiver is optimized for

small signals. The Hall2 ZMNL in Fig. 36 shows the reason

for this. It peaks at approximately 1.3 times the RMS value

of the noise and approaches 0 as the input goes to infinity.

This behavior of the ZMNL must be modified to obtain a '

receiver that will also work in the large signal case. In

the next Section a robust receiver structure is proposed

that does this. A robust receiver is differentiated from a

parametric receiver in that the robust receiver does not

113 *!
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Figure 37. PFA for Locally optimum Receiver in Hall Noise "
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depend on the parameters of the noise density and it per-

forms well, if suboptimally, over a class or even differing

classes of noise densities.

bE. ADAPTIVE LIMITER

The ZMNL derived in the previous Section is a relatively %

complex function. Furthermore, it does not work for large

signal levels. In this section we consider a practical

implementation of the ZMNL consisting of an adaptive limiter

to approximate the ZMNL function with a modification to -

improve large signal performance. Although the locally "

optimum receiver was derived for Hall type impulsive noise.

if the approximation to it is properly designed, it should

show robust performance in the presence of many impulsive %

noise process.

Examining the PD curves of the locally optimum receiver

for the Hal12 model shows that it provides increased ,

detection performance over the square and sum receiver from .

-10 dB to 7 dB SNR. Since this region is where the square

and sum receiver suffered the worst performance degradation

in impulsive noise, the Ha12 ZMNL was chosen to be modified

to obtain a robust nonlinearity. The solid curve in Fig. 39

is the Hall2 ZMNL. To correct its performance at large

signal levels, the ZMNL was first altered, as shown by the

dashed line in Fig. 39, by extending its characteristic

straight out from its maximum value. Furthermore, an

$7.,

'I
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iequvalent test statistic is obtained i g d(x) s any linear

iunction o g(x) FREi. 46] so t

R i g'(x) = gx) ar u e 0. (5-15) ,

U,.,• %I
-a

z.

actriti at it-aiu au spootoa otema

valu ofteHl itiuto o hc twa eie seb

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4l.0 4.5 5.0

Tl I Figure 39. Modiication to ZMNL

With suitable parameters and 13, the modi~ied ZMNL is shown

in Fig. 40. The level, , remains to be determined.

R~ecalling Eqn. 5-13, the argument oP the ZMNL char-

acteristic at its maximum value is proportional to the mean

value oP the Hall distribution Por which it was derived (see

Table I). For the Hall2 distribution the proportlonality ,

constant is approximately 1.6. Therefore, in order to --*"

preserve the improvement in Po in the same SNR region as the

Hall2 ZMNL, the limiter level was set to equal 1.6 times the
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g~x)

F igure 40. Linearized Modification to ZMNL

mean value of the assumed noise distribution.

A block diagram of the receiver is shown in Fig. 41.

H,

Yes

H.

Select

Nonlinearity and
Threshold

Figure 41. Receiver Structure for Adaptive Limiter
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Note that the ZMNL must be adjusted. This information could

be known a priori or, as symbolically shown in Fig. 41,

determined from the statistics of the noise. Both cases. .

% will be examined below. j.

The false alarm rate performance of this modified

receiver in Hall and Gaussian noise, where the statistics
4.. %

are known a priori, is shown in Fig. 42 for N equal to 10.

The value for a was determined from the noise mean. At a

PF, equal to 1 x 10-, the PO curves of this receiver are

shown in Fig. 43. The threshold was determined from Fig.

42. The Gaussian noise performance of this receiver is

poorer than that of the square and sum receiver but only by4. *

-% a few percent. However, there is a dramatic improvement ir

the PO for the impulsive noise cases. It is interesting to

. note that for the same noise power, a well designed

nonlinear receiver provides better detection performance in .

impulsive noise than the optimum receiver for Gaussian noise

. [Ref. 49.

By plotting the empirically determined threshold from

Fig. 42 versus the mean of the noise distribution it is seen

that the relationship is almost linear. This is shown in

Fig. 44 for two false alarm rates. Using this relationship

the ZMNL and threshold can be adaptively modified to provide

V" nearly constant false alarm rate (CFAR) performance under

V" varying noise conditions. This is a desirable charac-

teristic for an energy detection receiver.
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A final question to be resolved in implementinp the

receiver is the real time determination of an estimate of

the mean and mean square values of the noise. One approach

is to sample the noise in a signal free adjacent channel and

another is to form the sample mean of the noise using past

sample values with no signal present [Ref. 50]. We w2ll

implement the latter approach and test the adaptive receiver

on actual signal and noise samples. In sequencing the

samples two general approaches may be used. The samples may

be processed in blocks with no overlap which is the case

corresponding to +he hypothesis tests discussed in this

Chapter. The other option is sequentially processing each

sample with rank two updates of the test statistic, the ZMNL

and the threshold. In this case the hypothesis test

formulation will provide a lower bound on Pb.

The sequential sampling approach was chosen and two runs

of the adaptive receiver are shown in Figs. 45 and 46. The

test statistic, shown by the dotted line, was formed from

the 10 previous samples using the receiver structure in Fig.

41. *The adaptive threshold, shown by the dashed line, was

formed from the sample mean and mean square estimates of the

previous 20 though 50 samples. The sample mean is shown by

the heavy solid line and the individual envelope data points

by the light solid line.

This receiver structure requires H. to be true at the

start of the test and will detect the transition to H,. Irv
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...

-74



4 4-

to 4J 4

! ,...-, -. p.U) E

41 41'4

Utl

I oo, S

,... ::j.ob..

Ut 'A

........ ........ CD.

.... _____ _______ ______-.-..

..... I .....

............ - CD..

-~~~.... CL.;,.... . -,

. , ... ... .--.....

I3I4
1!11 

1.

S, ''' "

................. -E

S 0

0.0 0,. 0*9 oli o-o

7 %-1

_ _ _i_ .*W2p ..n
14" ,0"

.-----S

o..

.'.''..-.''''.. ._ __. , .2. ' , ": _. _ _' . '. . ' '''. , '_ , "."-.- - o",,.. .,.- . ... ,..-.-. ;'



TV. .-.6 -:

4 L

*' 0 0 ..,

.,. ("

00

lb .. L.

U, .Eu,.
I . . 4.)

. U ,I 4 .) ' , ,

S.I

I- I- w~ 0 ,' .

C3 S.

, ., .

..... ...........

.,,..........

S7 4

I.' ',** * .* .1-

0101 0* 0, * 0 0-.-k

....... :...... E.u , :

-~. __ _.__ _.-11*__ __ __._

S..* I -L.J J@

:" ~ ~~~~~~~.......;".... ....

*. * _ __.. . ... .-

. -.......-.

1251

€' I _._ _ _ _ _ "llEu

- 0 ..(

_ _ _ _ _ _ _ _ _ "--__ _ _

,,,:.

*.%4.

-j* -. ' " .'.% %-* " " %. % *" _-" ." -% .% .- .* " .•". ."-% % % " .% '. "%



Since the adaptive threshold assumes noise only samples. it

will be corrupted when signal plus n oise samples are used to

form it. This will occur 20 samples after H, becomes true.

This effect can be seen in Fig. 45 where an actual ..

signal from one filter of a compressive receiver is plotted.

The noise is highly impulsive and would be a very di¢ficui,

detection environment for a receiver optimized for Gauss:an

noise. Samples 50 to 110 are noise only and samples 110 to

220 are signal plus noise. The test statistic exceeds the

threshold at sample 125 and the receiver would declare H, -E

true at this point. However, due to the fact that the test

statistic and the threshold are both corrupted by the si!nal

plus noise samples, the test statistic later drops below the

new threshold.

In Fig. 46, the receiver performance in a simulated gap

noise environment is analyzed. The signal commenced at sam-

ple 110 and the receiver declared the signal present at -

sample 117. Again the threshold is later corrupted and the

test statistic drops below the threshold.

F. SUMMARY

This Chapter has presented a systematic development of

the bandpass energy detection problem in impulsive nois.?.

Starting with a Hall density function for the noise, the

locally optimum receiver is derived. This receiver is

modified to design a practical receiver with robust NA
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performance in non-Gaussian noise. The design methodology

clearly delineates the role of the test statistic, threshold

and nonlinearity. This allows independent evaluation of

each of these features. One aspect of energy detection

receivers not considered is the role of data in filters

adjacent to the filter being processed. In an impulsive

noise environment, the noise statistics of adjacent filters

will be correlated and their use may potentially offer a

further performance gain.
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' VI. CONCLUSION

A. RESULTS

The dissertation has investigated the modeling oil

atmospheric and man-made radio noise and applied the results

to the bandpass energy detection problem.

~A generalized means of describing an impulsive noise

~process in terms of its complex envelope was derived.

Previous models of atmospheric noise were surveyed and some

extensions to the Hall model for atmospheric noise were

developed.

Using the physical characteristics of gap noise, a nine

parameter model was constructed that allows arbitrary sour-

ces of gap noise to be synthesized. The driving impulses

for the gap noise were postulated to be points of a

branching renewal process. The application of this type o4

probabilistic model to power line noise is unique.

Additional results include a new proof of the power spectrum

of an equilibrium renewal point process and a derivation of

the power spectrum of a truncated branching renewal point

process. The postulated model was shown to correctly

predict all the significant features of the observed

spectrum.

In a similar fashion, corona noise was postulated as a

filtered impulse process with a periodically modulated rate

function. This model was shown to correctly duplicate the
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observed time domain behavior of corona noise. A method for

estimating the parameters of the model was discussed and an

actual example of corona noise simulated.

The energy detection problem was also considered and

starting with an assumed density for impulsive noise, a .

design methodology for a parametric and robust receiver was

developed. This receiver was then tested against actual and

simulated data and shown to be superior to the Gaussian

noise receiver when corrupted with impulsive atmospheric or -"

power line noise.

It has been stated that in engineering design one seeks

not so much to be optimum but to avoid crippling non-

optimalities [Ref. 51). It is hoped that this research will

allow system designers to test their systems with simulated I7'
-,a

interference based on the models presented. The robustness
i.,'

of the system in an actual noise environment can then be

evaluated, as was done in this research for the locally

optimum energy detector. The noise models developed here

should be particularly applicable to systems that operate

from a fixed site within line of sight of power lines where

the chance of having interference from gap or corona noise

sources is significant. a,

B. FURTHER RESEARCH

At the conclusion of this dissertation several problems

are worthy of further study. Research should be done to

129
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define the range of values for the power line noise model

parameters and to determine the effect of power line

construction practices on the parameters. The suscept-

ibility of various types of communication equipment to

simulated gap and corona noise should also be examined. The

corona noise model needs to be extended so that it can be

specified and estimated using a bandpass vice lowpass filter

impulse response. The work on energy detection suggests

many opportunities for further research. The problem of

estimating the unknown noise parameters for the adaptive

updates and the inclusion of adjacent filter samples into an .

algorithm are prime examples.
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I APPENDIX A

I NSTRUMENTAT ION

The instrumentation configuration employed to provide

* data on the detailed time- and frequency-domain properties

of high frequency CHF) radio noise is shown in Fig. 47. The

fl E FIELD
SENSORS

JM

AMP ANLZR o

AMPLIFIER

TRANSLATO I SILOCP
CHNE Z1ED CMR

A LZ:

Figure~ ~ ~ ~ ~~~CIAYZRZ 47.ip2idBokDara fMaueetSse
3-AXI

radiofrequncy (F)iput t the nstruenta InPwAsY ite

a fxed HF on wie atena r awhp atena ouned n

moilue van. Oneliie Bomlete migaoeasurement Systemta-

portable and may be moved from site to site. Thote

system is installed in a mobile van for noise measurements .r

directly at the interference sourse CRef. 53).

In the lower half of Fig. 47, a Hewlett-Packard 141T

Spectrum Analyzer is used as a scanning receiver to drive a

Develco 7200B 3- Axis D'isplay. The spectrum analyzer can be
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tuned to any desired frequency in the HF band. Its scan

rate, scan width, intermediate frequency (IF) bandwidth, IF

p. gain, RF attenuation, and other controls can be adjusted to

best describe the noise under observation.

An alternate and complementary part of the system is

used to examine the narrowband properties of HF noise and is

depicted in the upper half of Fig. 47. An HF receiver is

used as an amplifier/translator and tuned to a frequency

where the noise is present. The demodulated audio output is

then applied to a Wavetek (Nicolet) UA500A spectrum analyzer

which subdivides the audio-output spectrum into about 500

frequency segments. When the full audio-output bandwidth of

5 kHz is examined, the UA500A provides a frequency

resolution of 10 Hz per segment. The Wavetek analyzer can

provide individual transforms or average a selected number

of successive transforms. The transforms (either individual

or averaged) are then presented on the 3-axis display or an

osc i 1 loscope.

The 3-axis display provides a continuous moving real-

time visual representation of the analog output from the

spectrum analyzers or narrowband receiver audio output. The

receiver or analyzer output analog data are. digitized in the

display and stored in a semiconductor memory. The data in

the memory are formatted and shown on a cathode ray tube

(CRT) in a convenient frequency-amplitude-time (3-axis)

132
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format. The 3-axis presentation can be frozen at any desired

time and photographed with a standard oscilloscope camera.

Fig. 48 illustrates the procedure used to make the 3-

axis presentation. The analog input is divided into 512

3TIME AXI

A M P L IT U D E 
L--- /LN

AXIS n' "---LINE 2
LINE I

FREQUENCY
AND/OR

SCAN TIME AXIS

J1.
Figure 48. Diagram of Data Format

equally spaced data points (indicated by the horizontal dots

of Fig. 48). The signal amplitude at each data point is

represented by an 8-bit word. When a scan is completed, its

data are also stored in memory. Line 1 in the view moves to

line 2, and the new scan appears as 1 ine 1. Subsequent

scans move earlier data, line by line, upwards along the

time axis to create a rising raster type display. When the

memory is full (64 scans), each new scan is entered into the

bottom line, and the oldest data at the top line is

discarded. The resulting animated view provides a visual

picture of noise and signals within the block of frequencies

if the spectrum analyzer output is being observed. I the
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receiver audio output is being observed the display is a

stacked series of consecutive time records. %

The 3-axis display has a number of controls to aid the

observer in analyzing the structure of data presented.

Among these controls are: (1) elevation and azimuth geometry

controls to vary the viewing aspect, (2) an amplitude

compression control, (3) a threshold control to vary

background levels, (4) time-axis expansion controls, and (5)

a stop-action switch to freeze the data in memory for

detailed observation, for observation from various aspects,

or for photographing. These controls are used to optimize

the presentation of desired sional detail.

Accurate frequency, time and amplitude calibrations are

maintained so that the resulting 3-axis photos can be

manually scaled for precise signal detail. The digitized

data at the display input are available at a diaital

interface connector for external digital recording or

processing. Received data can be processed by computer to

obtain conventional noise statistics. This feature permits

Q- '

the comparison of selected 3-axis views of noise with

standard statistical descriptors of noise.
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APPENDIX B

FILTERED IMPULSE PROCESS

The complex envelope of a noise process can be described

by the following equation

N(t) -jO,
n(t) = g(t) + Z: ate h(t-t1 ) (B-I)

1=1

where g(t) is a quadrature Gaussian process, h(t) is a

linear filter, a, is an independent, identically distributed

random amplitude and 0, is a random phase uniformly

distributed over 0 to 2n. The joint characteristic function

of the inphase and quadrature components of the above

process is

j (w, nc (t) + weno (t))
0(wt,w) = EEe . (B-2)

If the Gaussian noise is assumed independent of the

impulsive noise the characteristic function of the Gaussian

term alone can be written

j(wt ge (t) + wego (t))
0. (w. ,w. ) = Ele ]. (B-3)

The inphase and quadrature components of bandpass white

Gaussian noise are independent so

2 2

-NoB(w, + we )/2
0.(w,,w.) = e (B-4)

The joint characteristic function of the ith pulse of the

inphase and quadrature impulsive noise terms is
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jai (w, (hc (t-ti )cose, - hs (t-t, )sine, ) +
0t (w, ,wa ) = Ete

wg (hc (t-t ) sin + hs (t-t, )cos, ))
]. (B-5)

Since the noise process is narrowband, its joint density

function is circularly symmetric and the following

transformation can be applied

2 2 1/2 -1
W = (w, + W2 ) = tan (W,/wt)

=i Wr Cosa =a w~sina. (B-6)
:'.,

This type of transformation of a 2-D Fourier transform to a

one dimensional transform of the envelope is known as a

Hankel Transform and the inversion formula is

p(r) = rw, 0(w)JO (rW.)dw. (B-7)
0.

where J0  is the ordinary Bessel function of the first kind,

order 0. To simplify the derivation it is assumed that

he (t) is zero (see comment before Eqn. 2-21). Now
.4-

transforming Eqn. B-5 and taking the expected value of 8,

and a,

(0 2n ;:'
jw.a, hc (t-ti )cos(8, -a) "'--

0, (w,) =E p(B, )p(a )e dOda,]

0 0 (B-8)

Since 6, is uniformly distributed over 0 to 2n,
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0, (w.) = Erl p(a, )J, (w.a, he (r))dai 1.

0 (B-9)

If N(T) in Eqn. B-1 is a Poisson process with rate X and

observation interval T, the T, 's are independent and uniform

over (0, T) allowing the characteristic function of the

impulsive term to be written as

Sk

.¢ 0,(w,) = Z 0 (.) PrEN = k]. (B-10)
k=O

4%..

Now using the probability law for k events of a Poisson

process

0 k -XT k
01 (W.) = Z 0 (W.) e (XT) /k! (B-11)

k=O

which sums to
o T

XJp(a) [Jo (w.ahc (-r)) - 1]d'da (B-12)

0 0 5

0 (e.) = e

Using the convolution property of zero order Hankel

transforms [Ref. 54] and Eqn. B-7 the density function of

the envelope for Gaussian plus impulsive noise is

4..%

p(r) j rw. Jo (rw )0a (, )0t (w, )dw. (B-13) '
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APPENDIX C

SIGNAL PLUS NOISE DENSITY

For the truncated Hall model with e = 3, the joint

density function of the in-phase and quadrature components

is given by:

2 2
D 2y 2 2 2

p(x,y) = < < x + y < To
2 2 2 2 2

2n(D -1)(x + y + y
2 2 2

=0 x + y > To (C-i)

where
2 2 1/2

D (1 + T /y)

The sum of a random phase sinusoidal signal of amplitude A

and noise can be expressed in terms of its in-phase and

quadrature components w and z where:

w = Acos(w) + x

z = Asin(4) + y. (C-2)

Eqn. C-2 is substituted into Eqn. C-1 and transformed to

polar coordinates with

w = rcos(0)

z = rsin(O) 
(C-3)

where r represents the envelope and 0 the phase of the

signal plus noise. The joint probability density function

p(r,O) conditioned on 41 is
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D r2y
p(r,Obl,) =

2 2 2 2 2
2n(D -1)(r - 2Arcos(w - 0) + A + y

2 2 2

0 < r - 2Arcos(1 - 0) + A < T. ',.

= 0 elsewhere. (C-4)

This expression is valid for all values of r between 0 and

T, - A. Since our principal interest is the small signal

case, A << T,, this will not affect subsequent analysis. By

integrating Eqn. C-4 with respect to 0, the conditional mar-

ginal density function of the envelope, p(r1w), is obtained;

TI"

p(rli) =2 p(r,01/) dO. (C-5)

The integral is a function only of cos(j - 0), W appears

nowhere else in the integral. Therefore by setting a = w -

0 and using Eqn. 2.554-3 in [Ref. 54] gives

2 2 2 2 2
(r + A + y ) 2y rD,

p(rl4,) =
4 22 22 22 4 4 2

(r - 2A r + 2A y + 2y r + A + y )(D - 1)
(C-6)

Since 4 is assumed independent from sample to sample and

uniformly distributed over 2n,

p(r) = p(rlW)p(W) dW (C-7)

and 0
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%%

% 2 2 2 22 
(r + A + y )2y rD

%: P(r)-
4 2 2 2 2 2 2 4 4 2

(r -2A r + 2A y + 2y r 2+ A + y )(D- )

(C-8)

By a similar argument, the density function for a random

phase sinusoidal signal in narrowband noise with a Hall5

distribution is

4 2 2
2y r(b + 2a )

P(r)= (C-9)
2 2 5/2 .

(a - b )

where
2 2 2

a r + A + y

and

b -2Ar. '"

1.4
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APPENDIX D

SPECTRUM OF A RENEWAL PROCESS

The complex envelope representation of filtered impulse %

noise on a finite interval T is given by

N(T) -j,-
n(t) = 1 a, e h(t-t, ) ; 0 < t < T.

(D-I)

N(T) is a random unit counting process denoting the number

of impulses in the interval, the {t1 } are the random arrival

times and 8, is uniformly distributed over 0 to 2n. The

pulse amplitudes {a')} are identically distributed

statistically independent random variables with second

moment Al and fourth moment A,. The filtering effect on the

impulses are accounted for by the time invariant complex

envelope impulse response h(t).

The envelope squared of n(t) is

2 N(T) 2
E (t) = n(t)n*(t) = r a, h(t-ti)hm(t-t,)

(D-2)

where we have assumed terms of the form h(t-ti )h (t-tk ) for

different i and k are negligible. We estimate the power

spectral density (PSD) of the envelope by averaging

magnitude squared, length T, Fourier transforms of E' (t).

The mean value of the estimate is

S(w,T) = EE& (w) E (w)]IT (D-3)
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where
T

2 -jwt N(T) 2 -,jwt, p

ED (w,T) = E (t)e dt = Er at e He(W)J i :1l •

and -m -C- j wt I

He (W) = h(t)h* (t)e dt

M

is the Fourier transform of the magnitude squared impulse

response. We have assumed the impulse response is much

shorter than the observation interval T.

The mean of the estimate becomes

N(T) N(T) 2 2 -j(tl-tk) 2
S(w,T) = E[ E r ai ak e )IH,(w)I /T.

k=1 i=1
(D-4)

This is a compact and general expression for the PSD of a

truncated filtered point process. It is in terms of a

summation of the characteristic functions of the

interarrival time distributions between all combinations of -

pairs of points. (The term incorporating the frequency

response of the filter will be set to one for the rest of

the analysis.) Conditioning on N(T)

_ m N N 2 2 -jw(t,-t.)

S(w,T) = E EE 1 E a1 ak e ]Pr[N = l/T.
1=2 k=1 i=1 *'A•

(D-5)

Plotting the difference k-j indicates a different summation

over m and n shown below.
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k N nN

-3 -2 -1 -3 -2 -1 1 2 3
-2 -1 0 1 -2 -1 1 2

1 0 1 2 ... N -1 1
0 1 2 3 m

Let m = i - k and n i + k such that t. =tt -t, is the

mth interarrival time. Then Eqn. D-5 can be written as

N-1 -n 2 -jwt.

S(w,T) = Z E( E Z As e + NA4
1=2 n=1 m=1

N-1 n 2 .jwt.
+ r E A, e }PrCN= I]/T.

n=1 m=1 (D-6)

On further rearrangement

_ _ a 2 N-1 n jWt. .jwt.
S(w,T)= NA,/T + E As E{ JZ E e + e }PrCN = I]/T

1=2 n=1 m=1

(D-7)

and conditioning the interarrival time distribution over the

* number of pulses N in the interval T

- - 2. 1-1 n 4

Sp S(w,T) NA,/T + A, 1: r r: C0.(jwIN=l) +
%4 1=2 n=1 m=1 -

0.(( wjN=1)]Pr[N = I]/T

(D-8)
where

- j rt.

0.(jwlN=l) = Ele ] .f

is the characteristic function of the mth interpulse spacing

given exactly 1 pulses in the interval. The following

assumption is now made; that the mth interpulse spacing is
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the sum of m statistically independent interpulse sep-

arations, and is independent of i, the number of pulses in

the interval. This assumption will give an asymptotically -

correct result for the PSD as the observation interval T, %

becomes much greater than p, the mean value of the _

interarrival times.

With the above assumption

m
0.(jwlN=l) = 0 CQw) (D-9)

where 0(jw) is the characteristic function of the inter-

pulse separations. Eqn. D-8 then sums to

- = -2 1 1-1 0(jw)-O(jw)
S(w,T) NA./T + Aa E E I +

1=2 n=1 1-0(jw)

n+l
0" (jw)-O" (jw) -

]PrrN l/T
1 -0" ( jw ).-.'

(D-10)
and summing again .'

5% '

1+1
2 * 10(jw) O(jw) O(jw)

S(w,T) NA 4 /T + A, , { + "*'

1=2 2 2
(1- (jw) ) ( 1- (jw)) ( 1-0 (jw)) "'''

1+1
10" Qw) 0" (W) 0" (jw) i '

+ + }PrEN 1]/T.

2 2
( 1-0" (jw)) ( l-00 (1~)) ( 1-0" (jw)) .'

Rearranging w

2 O(w) 0"(jw)
S(w,T) = NA./T + A./T(N - Pr[N=I.} { + }

, zZ

1=2 "-

,,S ..
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0 0(jW1 0 (jW)
As/T (1 Pr[N=O-Pr[N=I} {

2 2
(1-0(jw)) (1-0 (jw))

1+1 1+1
2 = ( j w ) 0 " ( W ) "

+ A / T Z P r "[N = 1 3 .: .1=2 2 2-'
(1-O(jw)) (1-0" (jw)) (D-12)

Since RrEN -- r] is less than I and 10() < 1 Ref.

41 :p. 1153 for any distribution, then the absolute "'

..

convergence of the third term is guaranteed. For an '

equilibrium renewal process

N = EN(t)= T/ (D-12)

where p is the mean time between renewals [Ref. 321.e. "-:

Now letting T, the observation interval, go th abiolthe

asymptotic PSD is ttg eo

S(N) lim S(,T) = { + 2 Re - 1 1. 2)

T=>w P 2 1-0(w)
As (D-13)

This is the expression for the PSD of an independent

increment point process in terms of the characteristic

function of the interarrival distribution. A similar result

result was developed by Cox and Miller by considering the

renewal intensity function IRef. 55).
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APPENDIX E

SPECTRUM OF A BRANCHING RENEWAL POINT PROCESS

The complex envelope representation of filtered impulse

noise arising from a branching renewal process on a finite

interval T is given by

M(T) N. -je.n
n(t) = E r a.m e h(t-t..-T.) (E-1)

*m=1 n=1

where T. is the beginning of the mth main interval, N. is

the number of impulses in the mth interval, arriving at

times {t..n} after its onset and M(T) is the unit counting

process defining the number of main events in the

observation interval T. The pulse amplitudes {a.. } and

phases {6.. } are statistically independent random variables

and the {0..} are taken to be uniform on {0,2n}. The net

filtering effects on the impulses are accounted for by the

time invariant complex envelope impulse response, h(t).

The envelope squared of the process is

2 M(T) N. 2 2
E (t) = n(t)n*(t) = E a . Ih(t-t.,,+T.)I (E-2)

m=1 n=1

and using the same assumptions as Appendix D the mean value

of the Bartlett estimate of the PSD is

2
S(w,T) = E[(fE(w,T)j J/T (E-3)

where E,(w,T) is the length T Fourier Trar sform of E2(t).

Specifically,
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M (T) N. 2 -jwt. n -jwT.
Es (W,T) = Z E a n. e e H2 (W) (E-4)

m=l n=1

T
2 -jwt

with H, (w) = lh(t)l e dt, the Fourier transform of the

magnitude squared impulse response. To find the mean of the

estimate we must evaluate

_ 2 MMT N, MMT N,
S(w,T) =E[ IH9(w) l F r_ E Z

m=1 n=1 1=1 k=1

2 2 -j (t=.-t ) -jw(T= -T,)
awn alk e e ]/T

(E-5)

In order to simplify this expression, we make use of

assumptions 1, 2 and 4 from section 3D; (1) Ela 2 na
2

lkl]

a 4 , which will be normalized to one for simplicity, (2) N.

and N, equal either NI or N2 alternating between the two

values and (3) f(t=.n) and f(t, .) , the interarrival time

distributions, alternate between the negative and positive

phase distribution parameters. Furthermore, let M be an

even number of main process points occurring at intervals,

T./2, of a fundamental frequency (in our case f. = .o/2n

1/T. 60 Hz, the power-line frequency) and let M2 M/2.

This assumption will greatly simplify the calculations and

for M greater than 10, not significantly reduce the accuracy

of the result.
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Now looking only at the Factors involved in the

summation in Eqn. E-5, six separate terms can be identilied:

Term 1 - The inter-pulse group summations between pulses in .. !

pulse groups with NI pulses

Ni N1 JW(t. -tk
M2 E £ Ele

n=1 k=1

(E-6a)

Term 2 - The inter-pulse group summations between pulses in

pulse groups with N2 pulses

=M2 E E Ee I
n=1 k=1

(E-6b,

Term 3 - The intra-pulse group summations between pulses in

groups with NI pulses

M2 M2 -jw(m-l)T° NI NI jt -jWtk
E E e E Z Ele ]E~e I

m=1 1=1 n=i k=i
m<>l

(E-6c)

Term 4 - The intra-pulse group summations between pulses in

groups with N2 pulses

M2 M2 -jw(m-i)T. N2 N2 jWt. -jwtk ,'
E r e r E Ele IE[e I

m=1 1I n=1 k=1
m<>l

(E-6d)

Term 5 - The intra-pulse group summations between pulses in

groups with Ni pulses per group to pulses in groups with N2 IVA

pulses

-A 148
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jw(To/2-To) M2 M2 -jw(m-l)To Ni N2 jmt, -jWt
e : r e E E~e JE~e I

m=l 1=1 n=1 k=1
(E-6e)

Term 6 - The intra-pulse group summations between pulses in

groups with N2 pulses per group to pulses in groups with Ni

pulses

-jw(T./2-To ) M2 M2 -jw(m-l)T. N2 Ni jWt. -jWt
e E e EZ E~e ]E[e I

m=1 1=1 n=1 k=1
(E-6f)

It is important to note the expression for the

V...
characteristic function of the interarrival times differs

between the inter-pulse and intra-pulse cases. In the

inter-pulse case, discussed in Appendix D, the summation is

only over a function of the difference in the pulse

positions where in the intra-pulse case the summation is

over the absolute position of each pulse in its group.

Terms 1 and 2 can be evaluated using the results from

Appendix D and assumption 3 from section 3D:

Term 1 = M2 M(w,N1) (E-7a)

Term 2 = M2 M(w,N2) (E-7b) %

and the remaining terms can be determined by straightforward

evaluation of the finite sums

cos(M2 2nw/w.) - I
Term3={ - M2 } Q(w,NI)

cos(2nw/w.) - 1 (E-7c)

cos(M2 2na/w.) - I
Term 4 M2{ - M } (w,N2)

cos(2nw/w.) - 1 (E-7d)
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Terms 5 and 6 are complex conjugates and can be combined to

form one term
cos(M2 2nw/W.) - 1

Term 5a = 2cos(w(T./2-TO))( }iy(O, .N1,0a,N2)

cos(2nw/w. ) - 1
(E-7e)

where 0, and 0 a are the characteristic functions associated

with the interarrival times for each phase and NI and N2 are

the number of renewals associated with each phase. The

functions M, Q, and 41 are defined below;

5 N - N'O(jw) 0(jw) (1 - OkjW)
(O,N) = - 2 Re{ .

2 2
11- 0(W)J (1 - OQW)) (E-8)

* N+1 2
10(jW) - 0(jw) I

SVO,N) =

.1 - OQjw)I (E-9)

and 5'5_5

N1+-1 N2-1-1

(0, ,N1 ,0. ,N2) = (0, (jw) - 0, (jw) ) (0, (-jw) - 02 (-jw) )

(I - 01 (jw)) (I - On (-jw))
(E-10)

Thus

5
S(w,T) = {E[H(w)]/T} E Term(n). (E-11)

n=1
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APPENDIX F

NON-HOMOGENEOUS POISSON PROCESS

The following derivation is for the mean and variance of

a compound periodic non-homogeneous filtered Poisson point

process. This proof is a generalization of a proof

presented in Papoulis [Ref. 41:pp. 382-383]. The expression

for such a process on an interval 0 to T is given by

N(T)
n(t) = E aih(t-t,), (F-1)

i=1-

where N(T) is a unit counting process with periodic rate

parameter X(t), a t is the weighting of the ith point and is

independent and identically distributed (IID) from point to

point and h(t) is the time invariant impulse response of the

filter. 
.,

The time axis is divided into consecutive intervals I,

of length Aa where A = a - a.&. The number of jumps in

the counting process in the j h interval I, is given by Am,.

If &a is sufficiently small, then the contribution to the

total noise process from the j h interval is

an, E £ a, h(t- ) , (F-2)

i=1

where am, is a Poisson random variable with its rate

parameter approximately equal to
-,.

X(a )a. (F-3)
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The moment function of the jt" interval is then

AM,
s Z a, h(t-oc,

A0,(s) v Ele ]. (F-4)

Conditioning on Am,

AM,

s C a, h(t-j)
i=1

A 0 (s) a Ele IAm, = k] Pr[Am, = k] (F-5)

and

k sal h(t-a.)

&A0 (s) v EE rl e 3 PrCAm = k3. (F-6)
"V" i =1

Since the a1 's are independent from pulse to pulse

k sah(t-a,)
As, (s) 1 fi Ete I Pr[Am, = k], (F-7)

p. i=1

where the expectation is with respect to the random

amplitude a. Using the Poisson probability law and recog-

nizing the series expansion for the exponential gives

sah (t-aj)
X(a, )Aa{ECe -}

Aj (s) a e (F-8)

Since

n(t) = C Ani(t), (F-9)

a sum of independent random variables, then

0 .(s) = A 0 (s) (F-10)

S.

using the convolution property of the moment generating

function. The cumulant generating function is defined as
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'J. (S) = ln[O. (s)], (F-11)

where In is the natural logarithm and

41 (s) = ln[(A0, (s)]. (F-12) '.

As Am => 0, then eat

. (s) = p(a) e - lclcda. (F-13)

Using a similar argument the joint cumulant generating

function for two random variables, n(t. ) and n(ta) is

0D 0

- stah(t, -x) + so ah(tg -a)

4I. (s, ,s. ) = p(a) X(a) [ e - 1]dcda.

(F-14) %

-4-.

p;pl

A6
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APPENDIX

AUTOCORELATON OFCORON NOIS

The eanvale ofthecycostaionry roces dfind b

he) mea vau of hecyclosnttionayT poes dfined-by

n=O.

Exasnmpin 1h aosn 2n inetio ng4 sgvnbyEn -2

*2 2

2 / -a

Wo ~ ~ ~ w n w -

w~n * - n k~afsin(wont)]

1/2 k=1 (2k-i)'! 2C(
2 ((a f

(G-2)
1/2

where (Snr/2) =EEa3 and (2k-i)!! = 1 3 5 ... 2k-1 (Ref. 54:

Eqn. 3.897). The sine term is in quadrature with the

dominant cosine term of Eqn. G-2 and represents a phase

shift in the mean of the process relative to the rate

function. This is due to the filtering effect where thew

impulse response of the filter persists, thus causing a lag

in the mean value of the process. For the values of a and

wo considered in this work, the sine term in Eqn. G-2 will
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be negligible relative to the cosine term. Physically, this

means that for filter bandwidths much greater than the

fundamental frequency of the corona noise, the phase shift

will be insignificant.

Similarly the variance of the envelope when considered

as a cyclostationary process is

2 2
-We n

N, 1 1/2 8ca
Varle(t)] • 2 E I - (a/2n) e a. cos(wo nt)I.

n=O 2
(G-3)

Using Eqn. 4-14 the covariance of the assumed process is

2
NY -a(ti-s) -a(ta-s)

Cov(t, ,t&) = 1: a. cos(onS)(/r)e e ds
n=O -

max(ti ,ta) (G-4)

where after rearranging and completing the square

2
-a (t,-ta) /2

Cov(t ,t,) = (28(a/n)e ) x

2
N, -2a(s-(t,+t&)/2)

I a.cos(w0 ns)e ds.
n=O

max(t ,ta) (G-5)

Letting

u = (s (t, + to)/2), (G-6)

the covariance is
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-a -t., 2 /2

Cov(t, ,ta) = ((/.)2fe )x

C. 2

SNT -2au

E a. cos(w. n(u+(t, +ta )/2)e du
n=O

it, -ti I (G-7)

which cannot be evaluated in closed form.

The stationary autocorrelation function is found by

using Eqns. G-2 and G-7 and the definitions given by Eqns.

4-15 and 4-19. The term due to the covariance in the auto-

correlation function is

2 T, -

-=r /2 I' N, -2au
28(a/r). /T, n Ea.cos(won(2t+-r)) cos(Wonu)e du

,n=O

CO 2
-2ctu

+ a.,sin(w 0 n(t+-r/2)) j sin(wonu)e du]dt.

I'rl (G-e)
.4T

The sinusoidal terms will integrate to zero with the

exceptior, nf the a0  cosine term and the expression simp-

lifies to

2 C 2
-a,'r /2 -2au

28(a/n)e ao e Cdu.

(G-9)

This term will be dominated by the first exponential and is

approximated by
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2
-aT /2 1/2

2f8e a0  (a/art) (G-10)

The stationary autocorrelation function term due toA

a ."

cyclostationary mean value function is

-J E~e(t)]EEe(t+q)] dt, (G-11)To

which using Eqn. G-2 is equal to

2 2

-ci-. n

Nr 4ak 2 2
28 (1/8) E e a. coswonT + 28(1/4)ao

n= 1

(G-12)

An approximate expression for the stationary autocorrelation .

function is "

2
-a-r /2 1/2 2

R("r) • 2S(e ao (X/8n) + (1/4)ao

2 2
-WO n

N, 4ag 2
+ (1/8) E e a. cos(wonT)J... "

n=1
(G-13)
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APPENDIX H

LOCALLY OPTIMUM ENERGY RECEIVER,

The observations consist of a sequence of N complex

samples. The hypotheses are: ?

* , .

H, "- xi :- n, .

versus

1/2

H, x, =- ni + A Si i = 1,...,N (H-1)".'

where n, are an independent, identically distributed (IID). ,

complex noise samples with a joint inphase and quadrature

density p(nc ,ng). The sequence s, is a complex, zero mean

signal sequence with a known variance, a,, and A is a real,

positive number. The 1/2 power of A is chosen to facilitate °=

="the derivation.

~The generalized likelihood ratio [Ref. S:p. 585,21] to

~~test the hypotheses described by Eqn. H-1 is :

N p (xc i -A se I , xe 1 -A so & .
ACx, A) = 17 p(s c= ,s o, )dsc i ds e •

i=1 p(xC I ,x- ,

(H-2)

Applying Eqn. 5-8, and differentiating with respect to A,

N - s e i lp ( x c i - A s e i , x e 1- A s o ) / 2 %-tLCL(xY,A) O E E RECI

loxc i p(xc I ,xe I )A t
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1/2 1/2
so, op(Xc , -A set ,x.1 -A set )/2

) p (SC 19 o )dsc dse
1/2 A=>O.

IDOiP(xc , xs )A
(H-3)

Letting A go to 0 and simultaneously taking the expectation r.

of set and so& requires L'hospital's rule to evaluate the

expression [Ref. 563. After taking derivatives the test

statistic is

tLO~~~~C x) N Ca 2
DpxaA~~t A /

2 1/2 1/2
Nc S. j p lx p- Sc Ix A -scxe. s

tvxc (x. + p7c£ X

22 1/2 112
sc s 1 px 1 3A Sc~ j,-x1  s-A s o d

so 2 'o p~c (x A>A0.I e Aso /
Ix, ppxci ,xogi)sci

(H-4)

In general, the inphase and quadrature noise components will

be circularly symmetric even though not necessarily

statistically independent [Ref. 41:p. 133] such that

-'2 2 1/2
f(r) =p((xc +. x, (H-5)

with

2 2 1/2
r =(Xc +. x, (H-6)
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Now A may be set to 0 and

0 CD

p 2 2 2 2
N se Er, f''(r, )xc - r, f'(r, )xc, + r, 1/2

tLO0() 0 ] Lr)

i=1 3

JJ-- r-1

Sc j so, Cr, f' ' (ri )xc I x* - f' (Cr )xc j xe j
+

3
r, f(r,.)

2 2 2 2
so [r, f'' (r)x, 1 - r, f'(r, )xs + r, ]/2

Jp(sc 1 , se )dsci ds 1 .
3

r, f(r, ) (H-7)

If se, and so, are assumed to have equal variances and a

zero covariance the test statistic is now written as

N 2
tL o (r) = aj g, (r1 ) (H-8)

=i=1

where
f''(r) f'(r)

g(r) +4- (H-9)
f (r) rf(r)

If the unknot.n signal components are assumed to have equal

variances from sample to sample then an equivalent test

statistic is

N
tL0 (-r) = £ g(r1 ). (H-10)

i=1

:-':

l"SI. '
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